Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2020, Volume 187, Pages 119–128 (Mi into735)  

Limit sets of differential equations near singular critical points

M. V. Shamolin

Lomonosov Moscow State University

Abstract: We suggest a method of the study of dynamical systems near singular critical points, i.e., points in whose neighborhoods the vector field of the system cannot be expanded into a series. We apply methods of the theory of multidimensional topographic Poincaré systems for the search of attracting regimes in the system.

Keywords: dynamical system, singular critical point, limit cycle

DOI: https://doi.org/10.36535/0233-6723-2020-187-119-128

Full text: PDF file (205 kB)
References: PDF file   HTML file

UDC: 517.925
MSC: 34C07, 37G10

Citation: M. V. Shamolin, “Limit sets of differential equations near singular critical points”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 187, VINITI, Moscow, 2020, 119–128

Citation in format AMSBIB
\Bibitem{Sha20}
\by M.~V.~Shamolin
\paper Limit sets of differential equations near singular critical points
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 187
\pages 119--128
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into735}
\crossref{https://doi.org/10.36535/0233-6723-2020-187-119-128}


Linking options:
  • http://mi.mathnet.ru/eng/into735
  • http://mi.mathnet.ru/eng/into/v187/p119

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:23
    Full text:6
    References:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021