Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 2021, том 192, страницы 38–45 (Mi into779)  

Метод непрерывного продолжения по параметру при решении краевых задач для нелинейных систем дифференциально-алгебраических уравнений с запаздыванием, имеющих особые точки

М. Н. Афанасьева, Е. Б. Кузнецов

Московский авиационный институт (национальный исследовательский университет)

Аннотация: Рассматривается численный метод решения нелинейной краевой задачи для системы дифференциально-алгебраических уравнений с запаздывающим аргументом, имеющих предельные особые точки. Для численного решения краевой задачи применяется метод стрельбы. Значение параметра «пристрелки» вычисляется с помощью метода Ньютона. Рассматривается случай, когда задача является плохо обусловленной, вследствие чего метод может расходиться. В этом случае решение строится продвижением по наилучшему параметру, которым является длина кривой множества решений. Решение начальной задачи при каждом найденном значении параметра «пристрелки» вычисляется с помощью метода непрерывного продолжения по наилучшему параметру.

Ключевые слова: численный метод, краевая задача, дифференциальное уравнение с запаздыванием, метод стрельбы, метод продолжения по наилучшему параметру, сингулярно возмущенное уравнение

Финансовая поддержка Номер гранта
Российский научный фонд 18-19-00474
Работа выполнена при поддержке Российского научного фонда (проект № 18-19-00474).


DOI: https://doi.org/10.36535/0233-6723-2021-192-38-45

Полный текст: PDF файл (345 kB)
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
УДК: 519.624
MSC: 34B16

Образец цитирования: М. Н. Афанасьева, Е. Б. Кузнецов, “Метод непрерывного продолжения по параметру при решении краевых задач для нелинейных систем дифференциально-алгебраических уравнений с запаздыванием, имеющих особые точки”, Материалы Воронежской весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXX». Воронеж, 3–9 мая 2019 г. Часть 3, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 192, ВИНИТИ РАН, М., 2021, 38–45

Цитирование в формате AMSBIB
\RBibitem{AfaKuz21}
\by М.~Н.~Афанасьева, Е.~Б.~Кузнецов
\paper Метод непрерывного продолжения по параметру при решении краевых задач для нелинейных систем дифференциально-алгебраических уравнений с запаздыванием, имеющих особые точки
\inbook Материалы Воронежской весенней математической школы
«Современные методы теории краевых задач. Понтрягинские чтения–XXX». Воронеж, 3–9 мая 2019 г. Часть 3
\serial Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз.
\yr 2021
\vol 192
\pages 38--45
\publ ВИНИТИ РАН
\publaddr М.
\mathnet{http://mi.mathnet.ru/into779}
\crossref{https://doi.org/10.36535/0233-6723-2021-192-38-45}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/into779
  • http://mi.mathnet.ru/rus/into/v192/p38

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры» Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»
    Просмотров:
    Эта страница:18
    Полный текст:6
    Литература:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021