Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2021, Volume 195, Pages 142–156 (Mi into843)  

Examples of integrable dynamical systems of arbitrary odd order with dissipation

M. V. Shamolin

Lomonosov Moscow State University

Abstract: In this paper, we prove the integrability of some classes of odd-order homogeneous (in some variables) dynamical systems that admit extracting a system on the tangent bundle to a smooth manifold.

Keywords: dynamical system, nonconservative force field, integrability, transcendental first integral

DOI: https://doi.org/10.36535/0233-6723-2021-195-142-156

Full text: PDF file (200 kB)
References: PDF file   HTML file

UDC: 517, 531.01
MSC: 58-xx, 70-xx

Citation: M. V. Shamolin, “Examples of integrable dynamical systems of arbitrary odd order with dissipation”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 195, VINITI, Moscow, 2021, 142–156

Citation in format AMSBIB
\Bibitem{Sha21}
\by M.~V.~Shamolin
\paper Examples of integrable dynamical systems of arbitrary odd order with dissipation
\inbook Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 195
\pages 142--156
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into843}
\crossref{https://doi.org/10.36535/0233-6723-2021-195-142-156}


Linking options:
  • http://mi.mathnet.ru/eng/into843
  • http://mi.mathnet.ru/eng/into/v195/p142

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:21
    Full text:9
    References:8

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021