Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Keldysh Institute preprints, 2001, 026 (Mi ipmp1078)  

This article is cited in 3 scientific papers (total in 3 papers)

A scalar Riemann problem approach to the strong asymptotics of Padé approximates and orthogonal polynomials

A. I. Aptekarev, W. Van Assche, S. P. Suetin


Abstract: A method for the derivation of strong asymptotics for the numerator and denominator polynomials of Padé approximates and for the polynomials orthogonal with respect to a complex weight is studied in detail. The method is based on a Riemann boundary value problem on a two-sheeted Riemann surface. The paper serves as lecture notes for a short special course for students.

Full text: http:/.../preprint.asp?id=2001-26&lg=r

Citation: A. I. Aptekarev, W. Van Assche, S. P. Suetin, “A scalar Riemann problem approach to the strong asymptotics of Padé approximates and orthogonal polynomials”, Keldysh Institute preprints, 2001, 026

Citation in format AMSBIB
\Bibitem{AptVanSue01}
\by A.~I.~Aptekarev, W.~Van Assche, S.~P.~Suetin
\paper A scalar Riemann problem approach to the strong asymptotics of Pad\'e approximates and orthogonal polynomials
\jour Keldysh Institute preprints
\yr 2001
\papernumber 026
\mathnet{http://mi.mathnet.ru/ipmp1078}


Linking options:
  • http://mi.mathnet.ru/eng/ipmp1078
  • http://mi.mathnet.ru/eng/ipmp/y2001/p26

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Komlov, S. P. Suetin, “An asymptotic formula for polynomials orthonormal with respect to a varying weight. II”, Sb. Math., 205:9 (2014), 1334–1356  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. S. I. Bezrodnykh, “Finding the Coefficients in the New Representation of the Solution of the Riemann–Hilbert Problem Using the Lauricella Function”, Math. Notes, 101:5 (2017), 759–777  mathnet  crossref  crossref  mathscinet  isi  elib
    3. S. I. Bezrodnykh, “The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications”, Russian Math. Surveys, 73:6 (2018), 941–1031  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Препринты Института прикладной математики им. М. В. Келдыша РАН
    Number of views:
    This page:151
    Full text:32

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021