Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Keldysh Institute preprints, 2000, 012 (Mi ipmp1157)  

This article is cited in 1 scientific paper (total in 1 paper)

The continuum limit of the Toda lattice and discrete orthogonal polynomials

A. I. Aptekarev, W. Van Assche, A. B. Kuijlaars


Abstract: A method for integration of the Cauchy problem for the hyperbolic system (the so-called continuum limit of the Toda lattice, see above) is proposed. ∂ α / ∂ t = - ($\beta$-α)/4 ∂ α/ ∂ x, ∂ $\beta$ / ∂ t = - ($\beta$-α)/4 ∂ $\beta$/ ∂ x, α(x,0)=α(x), $\beta$(x,0)=$\beta$(x), α(0,t)=$\beta$(0,t)=α(0), α(1,t)=$\beta$(1,t)=α(1). The method is based on some extremal problems of the theory of logarithmic potentials. The method is justified by means of the known results of the asymptotic theory of the polynomials orthogonal with respect to a discrete measure.

Full text: http:/.../preprint.asp?id=2000-12&lg=r

Citation: A. I. Aptekarev, W. Van Assche, A. B. Kuijlaars, “The continuum limit of the Toda lattice and discrete orthogonal polynomials”, Keldysh Institute preprints, 2000, 012

Citation in format AMSBIB
\Bibitem{AptVanKui00}
\by A.~I.~Aptekarev, W.~Van Assche, A.~B.~Kuijlaars
\paper The continuum limit of the Toda lattice and discrete orthogonal polynomials
\jour Keldysh Institute preprints
\yr 2000
\papernumber 012
\mathnet{http://mi.mathnet.ru/ipmp1157}


Linking options:
  • http://mi.mathnet.ru/eng/ipmp1157
  • http://mi.mathnet.ru/eng/ipmp/y2000/p12

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. A. Lapik, “Ekstremalnaya mera i vneshnee pole v dvuparametricheskikh vektornykh zadachakh ravnovesiya logarifmicheskogo potentsiala”, Preprinty IPM im. M. V. Keldysha, 2016, 115, 20 pp.  mathnet  crossref
  • Препринты Института прикладной математики им. М. В. Келдыша РАН
    Number of views:
    This page:158
    Full text:29

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021