RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Keldysh Institute preprints, 2018, 054, 18 pages (Mi ipmp2416)  

The application of methods of the theory of ordinary differential equations Fuchs class to study the properties of solutions of the Klein–Gordon equations in the General Relativistic Theory

N. N. Fimin, V. M. Chechetkin


Abstract: The properties of solutions of the Klein–Gordon equations for various metrics of the general theory of relativity are considered. It is shown that the presence of singular points of the metric leads to qualitative rearrangement solutions of this equation, and the desingularization of solutions by a choice of a new metric requires a priori assumptions that can lead to a formally mathematically correct, but paradoxical physical meaning results.

Keywords: Heun's equation, hypergeometric equation, critical point, event horizon, wave packet, semiclassical approximation.

DOI: https://doi.org/10.20948/prepr-2018-54

Full text: PDF file (430 kB)
Full text: http:/.../preprint.asp?id=2018-54&lg=r
References: PDF file   HTML file


Citation: N. N. Fimin, V. M. Chechetkin, “The application of methods of the theory of ordinary differential equations Fuchs class to study the properties of solutions of the Klein–Gordon equations in the General Relativistic Theory”, Keldysh Institute preprints, 2018, 054, 18 pp.

Citation in format AMSBIB
\Bibitem{FimChe18}
\by N.~N.~Fimin, V.~M.~Chechetkin
\paper The application of methods of the theory of ordinary differential equations Fuchs class to study the properties of solutions of the Klein--Gordon equations in the General Relativistic Theory
\jour Keldysh Institute preprints
\yr 2018
\papernumber 054
\totalpages 18
\mathnet{http://mi.mathnet.ru/ipmp2416}
\crossref{https://doi.org/10.20948/prepr-2018-54}


Linking options:
  • http://mi.mathnet.ru/eng/ipmp2416
  • http://mi.mathnet.ru/eng/ipmp/y2018/p54

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Препринты Института прикладной математики им. М. В. Келдыша РАН
    Number of views:
    This page:38
    Full text:13
    References:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019