Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Keldysh Institute preprints, 2012, 077, 25 pp. (Mi ipmp95)  

This article is cited in 5 scientific papers (total in 5 papers)

Geometry of Hermite-Padé approximants for system of functions $\{f,f^2\}$ with three branch points

A. I. Aptekarev, D. N. Tulyakov


Abstract: In the problem on asymptotic of Hermite-Padé approximants for two analytic functions with branch points an algebraic function of the third order appears as the Cauchy transform of the limiting measure of poles distributions of the approximants. In general stuation this statement is known as the Nuttalls conjecture. Our goal is, assuming that this conjecture holds true to describe the algebraic functions for the case when approximated two functions have common three branch points. In this preprint we discuss statement of the problem, general approaches to its solutions, and we carry out analysis of the appearing algebraic functions of genus zero. We plan to consider the cases corresponding to the algebraic functions of higher genus in the future paper.

Keywords: Algebraic functions, Riemann surfaces, Hermite-Pade approximants

Full text: PDF file (692 kB)
Full text: http:/.../preprint.asp?id=2012-77&lg=r
References: PDF file   HTML file
Language:

Citation: A. I. Aptekarev, D. N. Tulyakov, “Geometry of Hermite-Padé approximants for system of functions $\{f,f^2\}$ with three branch points”, Keldysh Institute preprints, 2012, 077, 25 pp.

Citation in format AMSBIB
\Bibitem{AptTul12}
\by A.~I.~Aptekarev, D.~N.~Tulyakov
\paper Geometry of Hermite-Pad{\'e} approximants for system of functions $\{f,f^2\}$ with three branch points
\jour Keldysh Institute preprints
\yr 2012
\papernumber 077
\totalpages 25
\mathnet{http://mi.mathnet.ru/ipmp95}


Linking options:
  • http://mi.mathnet.ru/eng/ipmp95
  • http://mi.mathnet.ru/eng/ipmp/y2012/p77

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Proc. Steklov Inst. Math., 284 (2014), 168–191  mathnet  crossref  crossref  isi  elib  elib
    2. A. I. Aptekarev, D. N. Tulyakov, “Abelev integral Nattolla na rimanovoi poverkhnosti kubicheskogo kornya mnogochlena 3-i stepeni”, Preprinty IPM im. M. V. Keldysha, 2014, 015, 25 pp.  mathnet
    3. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. A. I. Aptekarev, D. N. Tulyakov, “Nuttall's Abelian integral on the Riemann surface of the cube root of a polynomial of degree 3”, Izv. Math., 80:6 (2016), 997–1034  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. V. G. Lysov, “Silnaya asimptotika approksimatsii Ermita–Pade dlya sistemy Nikishina s vesami Yakobi”, Preprinty IPM im. M. V. Keldysha, 2017, 085, 35 pp.  mathnet  crossref
  •     . . .
    Number of views:
    This page:224
    Full text:63
    References:30

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021