RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 2007, том 7, выпуск 1, страницы 23–27 (Mi isu139)  

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

Математика

Об эрмитовой интерполяции многочленами третьей степени на треугольнике с использованием смешанных производных

Ю. В. Матвеева

Саратовский государственный университет, кафедра математического анализа

Аннотация: При построении треугольных конечных элементов оценки погрешности интерполяции для производных функции в знаменателе содержат синус наименьшего угла треугольника. Способ эрмитовой интерполяции многочленами третьей степени, предложенный Н. В. Байдаковой, при аппроксимации любых производных свободен от условия “синуса наименьшего угла”. В работе рассмотрен двумерный кубический элемент в методе конечных элементов, подобный элементу Н. В. Байдаковой. Полученные оценки погрешности для производных функции по направлениям до третьего порядка включительно не зависят явно от геометрии треугольника. Установлена с точностью до абсолютных констант неулучшаемость полученных оценок погрешности аппроксимации производных по направлениям.

Полный текст: PDF файл (148 kB)
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
УДК: 517.518.238+517.518.85

Образец цитирования: Ю. В. Матвеева, “Об эрмитовой интерполяции многочленами третьей степени на треугольнике с использованием смешанных производных”, Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 7:1 (2007), 23–27

Цитирование в формате AMSBIB
\RBibitem{Mat07}
\by Ю.~В.~Матвеева
\paper Об эрмитовой интерполяции многочленами третьей степени на треугольнике с~использованием смешанных производных
\jour Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика
\yr 2007
\vol 7
\issue 1
\pages 23--27
\mathnet{http://mi.mathnet.ru/isu139}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/isu139
  • http://mi.mathnet.ru/rus/isu/v7/i1/p23

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Н. В. Байдакова, “O некоторых интерполяционных многочленах третьей степени на трехмерном симплексе”, Тр. ИММ УрО РАН, 14, № 3, 2008, 43–57  mathnet  elib; N. V. Baidakova, “On some interpolation third-degree polynomials on a three-dimensional simplex”, Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S44–S59  crossref  isi
    2. Н. В. Байдакова, “Влияние гладкости на погрешность аппроксимации производных при локальной интерполяции на триангуляциях”, Тр. ИММ УрО РАН, 17, № 3, 2011, 83–97  mathnet  elib; N. V. Baidakova, “Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 33–47  crossref  isi
    3. Н. В. Байдакова, “Оценки сверху величины погрешности аппроксимации производных в конечном элементе Сие–Клафа–Точера”, Тр. ИММ УрО РАН, 18, № 4, 2012, 80–89  mathnet  elib
    4. Н. В. Байдакова, “Новые оценки величин погрешности аппроксимации производных при интерполяции функции многочленами третьей степени на треугольнике”, Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 13:1(2) (2013), 15–19  mathnet
    5. Н. В. Байдакова, “Оценки снизу погрешности аппроксимации производных для составных конечных элементов со свойством гладкости”, Тр. ИММ УрО РАН, 20, № 1, 2014, 32–42  mathnet  mathscinet  elib; N. V. Baidakova, “Lower estimates for the error of approximation of derivatives for composite finite elements with smoothness properties”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 29–39  crossref  isi
    6. А. А. Клячин, “Построение триангуляции плоских областей методом измельчения”, Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ., 2017, № 2(39), 18–28  mathnet  crossref
    7. Р. Ш. Хасянов, “Эрмитова интерполяция на симплексе”, Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 18:3 (2018), 316–327  mathnet  crossref
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Просмотров:
    Эта страница:238
    Полный текст:80
    Литература:28
    Первая стр.:1

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019