RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2010, Volume 10, Issue 3, Pages 33–38 (Mi isu172)  

Mathematics

Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs

V. A. Yurko

Saratov State University, Chair of Mathematical Physics and Calculus Mathematics

Abstract: An inverse spectral problem is studied for Sturm–Liouville operators on arbitrary compact graphs with standard matching conditions in internal vertices. A uniqueness theorem of recovering operator's coefficients from spectra is proved.

Key words: Sturm–Liouville operators, spatial networks, inverse spectral problems.

Full text: PDF file (176 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517.984

Citation: V. A. Yurko, “Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 10:3 (2010), 33–38

Citation in format AMSBIB
\Bibitem{Yur10}
\by V.~A.~Yurko
\paper Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2010
\vol 10
\issue 3
\pages 33--38
\mathnet{http://mi.mathnet.ru/isu172}


Linking options:
  • http://mi.mathnet.ru/eng/isu172
  • http://mi.mathnet.ru/eng/isu/v10/i3/p33

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:154
    Full text:81
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019