RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2011, Volume 11, Issue 3(1), Pages 61–89 (Mi isu236)  

This article is cited in 1 scientific paper (total in 1 paper)

Mechanics

Finite integral transformations method – generalization of classic procedure for eigenvector decomposition

Yu. E. Senitsky

Samara State University of Architecture and Civil Engineering, Chair of Resistance of Materials and Construction Mechanics

Abstract: The structural algorithm of the finite integral transformation method is presented as a generalization of the classical procedure of eigenvector decomposition. The initial-boundary problems described with a hyperbolic system of linear partial second order differential equations are considered. The general case of non-self adjoint solution by expansion in the vector-functions is possible only by the use of biorthogonal of finite integral transformations. In particular, for self-adjoint initial-boundary problems solutions obtained by the method of finite integral transforms and the classic procedure of eigenvector decomposition expansion are identical, although the first of these is preferable. These statements are illustrated by the example of a closed solution of the dynamic problem for a three-layer anisotropic elastic cylindrical shell under the general conditions of loading and fastening on the circuit.

Key words: method, generalized algorithm, finite integral transformations, multicomponent ability, biorthogonality, special decomposition, vector-functions, boundary value problems, self-adjoint, non-self adjointness, hyperbolic equations, solution existence, convergency, singularity, integrality, cylindrical shell, tri-plies, refined theory, closed solution.

DOI: https://doi.org/10.18500/1816-9791-2011-11-3-1-61-89

Full text: PDF file (960 kB)
References: PDF file   HTML file

UDC: 517.958

Citation: Yu. E. Senitsky, “Finite integral transformations method – generalization of classic procedure for eigenvector decomposition”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:3(1) (2011), 61–89

Citation in format AMSBIB
\Bibitem{Sen11}
\by Yu.~E.~Senitsky
\paper Finite integral transformations method~-- generalization of classic procedure for eigenvector decomposition
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2011
\vol 11
\issue 3(1)
\pages 61--89
\mathnet{http://mi.mathnet.ru/isu236}
\crossref{https://doi.org/10.18500/1816-9791-2011-11-3-1-61-89}


Linking options:
  • http://mi.mathnet.ru/eng/isu236
  • http://mi.mathnet.ru/eng/isu/v11/i3/p61

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bespalova E.I., “Generalized Method of Finite Integral Transforms in Static Problems For Anisotropic Prisms”, Int. Appl. Mech., 54:1 (2018), 41–55  crossref  mathscinet  zmath  isi  scopus
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:717
    Full text:236
    References:51

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020