Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. Math. Mech. Inform., 2012, Volume 12, Issue 1, Pages 16–22 (Mi isu275)  

This article is cited in 10 scientific papers (total in 10 papers)

Mathematics

The intrinsic geometry of almost contact metric manifolds

S. V. Galaev

Saratov State University, Chair of Geometry

Abstract: In this paper the notion of the intrinsic geometry of an almost contact metric manifold is introduced. Description of some classes of spaces with almost contact metric structures in terms of the intrinsic geometry is given. A new type of almost contact metric spaces, more precisely, Hermition almost contact metric spaces, is introduced.

Key words: almost contact manifold, Sasakian manifold, $K$-contact manifold, the intrinsic geometry of almost contact metric manifolds.

DOI: https://doi.org/10.18500/1816-9791-2012-12-1-16-22

Full text: PDF file (173 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 514.764

Citation: S. V. Galaev, “The intrinsic geometry of almost contact metric manifolds”, Izv. Saratov Univ. Math. Mech. Inform., 12:1 (2012), 16–22

Citation in format AMSBIB
\Bibitem{Gal12}
\by S.~V.~Galaev
\paper The intrinsic geometry of almost contact metric manifolds
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2012
\vol 12
\issue 1
\pages 16--22
\mathnet{http://mi.mathnet.ru/isu275}
\crossref{https://doi.org/10.18500/1816-9791-2012-12-1-16-22}
\elib{https://elibrary.ru/item.asp?id=17574791}


Linking options:
  • http://mi.mathnet.ru/eng/isu275
  • http://mi.mathnet.ru/eng/isu/v12/i1/p16

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Bukusheva, S. V. Galaev, “Pochti kontaktnye metricheskie struktury, opredelyaemye svyaznostyu nad raspredeleniem s dopustimoi finslerovoi metrikoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:3 (2012), 17–22  mathnet  crossref  elib
    2. A. V. Bukusheva, S. V. Galaev, “Connections over a distribution and geodesic sprays”, Russian Math. (Iz. VUZ), 57:4 (2013), 7–13  mathnet  crossref
    3. S. V. Galaev, “Almost contact Kählerian manifolds of constant holomorphic sectional curvature”, Russian Math. (Iz. VUZ), 58:8 (2014), 35–42  mathnet  crossref
    4. S. V. Galaev, Yu. V. Shevtsova, “Pochti kontaktnye metricheskie struktury, opredelyaemye simplekticheskoi svyaznostyu nad raspredeleniem”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:2 (2015), 136–141  mathnet  crossref  elib
    5. S. V. Galaev, “Pochti kontaktnye metricheskie prostranstva s $N$-svyaznostyu”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:3 (2015), 258–264  mathnet  crossref  elib
    6. S. V. Galaev, “Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure”, Siberian Math. J., 57:3 (2016), 498–504  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    7. S. V. Galaev, “Dopustimye giperkompleksnye struktury na raspredeleniyakh sasakievykh mnogoobrazii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 263–272  mathnet  crossref  mathscinet  elib
    8. S. V. Galaev, “Obobschennyi tenzor krivizny Vagnera pochti kontaktnykh metricheskikh prostranstv”, Chebyshevskii sb., 17:3 (2016), 53–63  mathnet  elib
    9. S. V. Galaev, “$N$-extended symplectic connections in almost contact metric spaces”, Russian Math. (Iz. VUZ), 61:3 (2017), 12–19  mathnet  crossref  isi
    10. S. V. Galaev, “O raspredeleniyakh so spetsialnoi kvazi-sasakievoi strukturoi”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 2(39), 6–17  mathnet  crossref
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:309
    Full text:91
    References:50
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021