Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. Math. Mech. Inform., 2012, Volume 12, Issue 3, Pages 17–22 (Mi isu307)  

This article is cited in 6 scientific papers (total in 6 papers)

Mathematics

Almost contact metric structures defined by connection over distribution with admissible Finslerian metric

A. V. Bukusheva, S. V. Galaev

Saratov State University, Chair of Geometry

Abstract: The notion of the intrinsic connection and the extended connection of an almost contact metric manifold $D$ with admissible Finslerian metric is introduced and studied. Using this and the extended connection on $D$ as on the total space of a vector bundle, an almost contact metric structure is defined and investigated.

Key words: almost contact manifold, Sasakian manifold, intrinsic geometry of almost contact metric manifolds, admissible Finslerian metric.

DOI: https://doi.org/10.18500/1816-9791-2012-12-3-17-22

Full text: PDF file (168 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 514.764

Citation: A. V. Bukusheva, S. V. Galaev, “Almost contact metric structures defined by connection over distribution with admissible Finslerian metric”, Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012), 17–22

Citation in format AMSBIB
\Bibitem{BukGal12}
\by A.~V.~Bukusheva, S.~V.~Galaev
\paper Almost contact metric structures defined by connection over distribution with admissible Finslerian metric
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2012
\vol 12
\issue 3
\pages 17--22
\mathnet{http://mi.mathnet.ru/isu307}
\crossref{https://doi.org/10.18500/1816-9791-2012-12-3-17-22}
\elib{https://elibrary.ru/item.asp?id=22271127}


Linking options:
  • http://mi.mathnet.ru/eng/isu307
  • http://mi.mathnet.ru/eng/isu/v12/i3/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Galaev, “Almost contact Kählerian manifolds of constant holomorphic sectional curvature”, Russian Math. (Iz. VUZ), 58:8 (2014), 35–42  mathnet  crossref
    2. A. V. Bukusheva, “Sloeniya na raspredeleniyakh s finslerovoi metrikoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:3 (2014), 247–251  mathnet  crossref  elib
    3. S. V. Galaev, Yu. V. Shevtsova, “Pochti kontaktnye metricheskie struktury, opredelyaemye simplekticheskoi svyaznostyu nad raspredeleniem”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:2 (2015), 136–141  mathnet  crossref  elib
    4. S. V. Galaev, “Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure”, Siberian Math. J., 57:3 (2016), 498–504  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. S. V. Galaev, “Prodolzhennye struktury na koraspredeleniyakh kontaktnykh metricheskikh mnogoobrazii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 17:2 (2017), 138–147  mathnet  crossref  elib
    6. S. V. Galaev, “Klassifikatsiya prodolzhennykh bi-metricheskikh struktur na raspredeleniyakh nenulevoi krivizny subrimanovykh mnogoobrazii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 18:3 (2018), 263–273  mathnet  crossref  elib
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:283
    Full text:107
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021