RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2013, Volume 13, Issue 4(2), Pages 76–79 (Mi isu463)  

Mathematics

On a particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields

V. A. Matveev, O. A. Matveeva

Saratov State University, Russia, 410012, Saratov, Astrakhanskaya st., 83

Abstract: A condition on summatory function over a set of prime ideals for Dirichlet $L$-functions on numerical fields is obtained. This condition is equivalent to extended Riemann hypothesis. Analytical properties of Euler products associated with this equivalent are studied.

Key words: extended Riemann hypothesis, Dirichlet $L$-functions, numerical fields.

Full text: PDF file (294 kB)
References: PDF file   HTML file

UDC: 511.3

Citation: V. A. Matveev, O. A. Matveeva, “On a particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:4(2) (2013), 76–79

Citation in format AMSBIB
\Bibitem{MatMat13}
\by V.~A.~Matveev, O.~A.~Matveeva
\paper On a~particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 4(2)
\pages 76--79
\mathnet{http://mi.mathnet.ru/isu463}


Linking options:
  • http://mi.mathnet.ru/eng/isu463
  • http://mi.mathnet.ru/eng/isu/v13/i7/p76

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:95
    Full text:38
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019