Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. Math. Mech. Inform., 2014, Volume 14, Issue 2, Pages 199–209 (Mi isu502)  

This article is cited in 1 scientific paper (total in 1 paper)

Mechanics

On a form of the first variation of the action integral over a varied domain

V. A. Kovaleva, Yu. N. Radayevb

a Moscow City Government University of Management, 28, Sretenka str., 107045, Moscow, Russia
b Institute for Problems in Mechanics of RAS, 101-1, Vernadskogo ave., 119526, Moscow, Russia

Abstract: Field theories of the continuum mechanics and physics based on the least action principle are considered in a unified framework. Variation of the action integral in the least action principle corresponds variations of physical fields while space-time coordinates are not varied. However notion of the action invariance, theory of variational symmetries of action and conservation laws require a wider variation procedure including variations of the space-time coordinates. A similar situation is concerned to variational problems with strong discontinuities of field variables or other a priori unknown free boundaries which variations are not prohibited from the beginning. A form of the first variation of the action integral corresponding variations of space-time coordinates and field variables under one-parametrical transformations groups is obtained. This form is attributed to $4$-dimensional covariant formulations of field theories of the continuum mechanics and physics. The first variation of the action integral over a varied domain is given for problems with constraints. The latter are formulated on unknown free boundaries.

Key words: field, action, least action principle, field equations, transformation group, Lie group, infinitesimal generator, variation, varied domain, constraint.

DOI: https://doi.org/10.18500/1816-9791-2014-14-2-199-209

Full text: PDF file (243 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 539.374

Citation: V. A. Kovalev, Yu. N. Radayev, “On a form of the first variation of the action integral over a varied domain”, Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014), 199–209

Citation in format AMSBIB
\Bibitem{KovRad14}
\by V.~A.~Kovalev, Yu.~N.~Radayev
\paper On a~form of the first variation of the action integral over a~varied domain
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 2
\pages 199--209
\mathnet{http://mi.mathnet.ru/isu502}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-2-199-209}
\elib{https://elibrary.ru/item.asp?id=21719218}


Linking options:
  • http://mi.mathnet.ru/eng/isu502
  • http://mi.mathnet.ru/eng/isu/v14/i2/p199

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Murashkin, Yu. N. Radayev, “On a micropolar theory of growing solids”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 24:3 (2020), 424–444  mathnet  crossref  elib
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:212
    Full text:66
    References:52

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021