|
Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2014, Volume 14, Issue 3, Pages 305–311
(Mi isu514)
|
|
|
|
Mathematics
Approximation of the Riemann–Liouville Integrals by Algebraic Polynomials on the Segment
A. A. Tyleneva Saratov State University named after N. G. Chernyshevsky
Abstract:
The direct approximation theorem by algebraic polynomials is proved for Riemann–Liouville integrals of order $r>0$. As a corollary, we obtain asymptotic equalities for $\varepsilon$-entropy of the image of a Hölder type class under Riemann–Liouville integration operator.
Key words:
$p$-variation metric, $L^p$ space, Riemann–Liouville integral, best approximation, algebraic polynomials, $\varepsilon$-entropy.
DOI:
https://doi.org/10.18500/1816-9791-2014-14-3-305-311
Full text:
PDF file (176 kB)
References:
PDF file
HTML file
Bibliographic databases:
UDC:
517.51
Citation:
A. A. Tyleneva, “Approximation of the Riemann–Liouville Integrals by Algebraic Polynomials on the Segment”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:3 (2014), 305–311
Citation in format AMSBIB
\Bibitem{Tyu14}
\by A.~A.~Tyleneva
\paper Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 3
\pages 305--311
\mathnet{http://mi.mathnet.ru/isu514}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-3-305-311}
\elib{https://elibrary.ru/item.asp?id=21967151}
Linking options:
http://mi.mathnet.ru/eng/isu514 http://mi.mathnet.ru/eng/isu/v14/i3/p305
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 138 | Full text: | 54 | References: | 31 |
|