RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2014, Volume 14, Issue 4(1), Pages 395–400 (Mi isu527)  

This article is cited in 5 scientific papers (total in 5 papers)

Mathematics

Affine Systems of Walsh Type. Orthogonalization and Completion

P. A. Terekhin

Saratov State University, 83, Astrakhanskaya str., Saratov, 410012, Russia

Abstract: The new notion of affine system of Walsh type is introduced and studied. We proved results about orthogonalization and completion of affine systems of Walsh type with preservation of structure of affine systems.

Key words: Walsh system, affine system, comletness, orthogonality, multishift, factorization.

Full text: PDF file (150 kB)
References: PDF file   HTML file
UDC: 517.51+517.98

Citation: P. A. Terekhin, “Affine Systems of Walsh Type. Orthogonalization and Completion”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:4(1) (2014), 395–400

Citation in format AMSBIB
\Bibitem{Ter14}
\by P.~A.~Terekhin
\paper Affine Systems of Walsh Type. Orthogonalization and Completion
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 4(1)
\pages 395--400
\mathnet{http://mi.mathnet.ru/isu527}


Linking options:
  • http://mi.mathnet.ru/eng/isu527
  • http://mi.mathnet.ru/eng/isu/v14/i4/p395

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. A. Terekhin, “Affine Riesz bases and the dual function”, Sb. Math., 207:9 (2016), 1287–1318  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Kh. Kh. Kh. Al-Dzhourani, V. A. Mironov, P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Polnota i minimalnost”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 247–256  mathnet  crossref  mathscinet  elib
    3. S. V. Astashkin, P. A. Terekhin, “Basis properties of affine Walsh systems in symmetric spaces”, Izv. Math., 82:3 (2018), 451–476  mathnet  crossref  crossref  adsnasa  isi  elib
    4. S. F. Lukomskii, P. A. Terekhin, S. A. Chumachenko, “Rademacher Chaoses in Problems of Constructing Spline Affine Systems”, Math. Notes, 103:6 (2018), 919–928  mathnet  crossref  crossref  isi  elib
    5. S. V. Astashkin, P. A. Terekhin, “Affine Walsh-type systems of functions in symmetric spaces”, Sb. Math., 209:4 (2018), 469–490  mathnet  crossref  crossref  adsnasa  isi  elib
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:217
    Full text:92
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020