  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2017, Volume 17, Issue 4, Pages 402–418 (Mi isu734)  Scientific Part
Mathematics

Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity

I. A. Trishina

Voronezh State University, 1, Universitetskaya Pl., Voronezh, Russia, 394036

Abstract: In the paper we introduce and study a new class of almost periodic at infinity functions, which is defined by means of a subspace of integrally decreasing at infinity functions. It is wider than the class of almost periodic at infinity functions introduced in the papers of A. G. Baskakov (with respect to the subspace of functions vanishing at infinity). It suffices to turn to the approximation theory for a new class of functions, where the Fourier coefficients are slowly varying at infinity functions with respect to the subspace of functions that decrease integrally at infinity. Three equivalent definitions of functions almost periodic at infinity with respect to integrally decreasing functions at infinity are formulated. For their investigation, the theory of Banach modules over the algebra $L^1 (\mathbb{R})$ of summable functions is applied. Almost periodic functions at infinity appear naturally as a solution of differential equations. Criteria for the almost periodicity at infinity of bounded solutions of ordinary differential equations of the form $\dot{x}(t) = Ax (t) + z (t)$, $t \in \mathbb{J}$ are formulated, where $A$ is a linear operator and $z$ is an integrally decreasing function at infinity, defined on infinite interval $\mathbb{J}$ that coincides with one of the sets $\mathbb{R}$ or $\mathbb{R}_+$.

Key words: almost periodic at infinity functions, slowly varying at infinity functions, integral decreasing at infinity functions.

DOI: https://doi.org/10.18500/1816-9791-2017-17-4-402-418  Full text: PDF file (256 kB) References: PDF file   HTML file

Bibliographic databases:   UDC: 517.9

Citation: I. A. Trishina, “Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 17:4 (2017), 402–418 Citation in format AMSBIB
\Bibitem{Tri17} \by I.~A.~Trishina \paper Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity \jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform. \yr 2017 \vol 17 \issue 4 \pages 402--418 \mathnet{http://mi.mathnet.ru/isu734} \crossref{https://doi.org/10.18500/1816-9791-2017-17-4-402-418} \elib{http://elibrary.ru/item.asp?id=30771350} 

• http://mi.mathnet.ru/eng/isu734
• http://mi.mathnet.ru/eng/isu/v17/i4/p402

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. I. A. Vysotskaya, “Pochti periodicheskie na beskonechnosti resheniya raznostnykh uravnenii”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 38–46   •  Contact us: math-net2020_04 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020