RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2017, Volume 17, Issue 4, Pages 402–418 (Mi isu734)  

This article is cited in 1 scientific paper (total in 1 paper)

Scientific Part
Mathematics

Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity

I. A. Trishina

Voronezh State University, 1, Universitetskaya Pl., Voronezh, Russia, 394036

Abstract: In the paper we introduce and study a new class of almost periodic at infinity functions, which is defined by means of a subspace of integrally decreasing at infinity functions. It is wider than the class of almost periodic at infinity functions introduced in the papers of A. G. Baskakov (with respect to the subspace of functions vanishing at infinity). It suffices to turn to the approximation theory for a new class of functions, where the Fourier coefficients are slowly varying at infinity functions with respect to the subspace of functions that decrease integrally at infinity. Three equivalent definitions of functions almost periodic at infinity with respect to integrally decreasing functions at infinity are formulated. For their investigation, the theory of Banach modules over the algebra $L^1 (\mathbb{R})$ of summable functions is applied. Almost periodic functions at infinity appear naturally as a solution of differential equations. Criteria for the almost periodicity at infinity of bounded solutions of ordinary differential equations of the form $ \dot{x}(t) = Ax (t) + z (t)$, $t \in \mathbb{J}$ are formulated, where $A$ is a linear operator and $z$ is an integrally decreasing function at infinity, defined on infinite interval $\mathbb{J}$ that coincides with one of the sets $\mathbb{R}$ or $\mathbb{R}_+$.

Key words: almost periodic at infinity functions, slowly varying at infinity functions, integral decreasing at infinity functions.

DOI: https://doi.org/10.18500/1816-9791-2017-17-4-402-418

Full text: PDF file (256 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.9

Citation: I. A. Trishina, “Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 17:4 (2017), 402–418

Citation in format AMSBIB
\Bibitem{Tri17}
\by I.~A.~Trishina
\paper Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2017
\vol 17
\issue 4
\pages 402--418
\mathnet{http://mi.mathnet.ru/isu734}
\crossref{https://doi.org/10.18500/1816-9791-2017-17-4-402-418}
\elib{http://elibrary.ru/item.asp?id=30771350}


Linking options:
  • http://mi.mathnet.ru/eng/isu734
  • http://mi.mathnet.ru/eng/isu/v17/i4/p402

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Vysotskaya, “Pochti periodicheskie na beskonechnosti resheniya raznostnykh uravnenii”, Materialy Voronezhskoi zimneimatematicheskoi shkolySovremennye metody teorii funktsiii smezhnye problemy.28 yanvarya–2 fevralya 2019 g.Chast 2, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 38–46  mathnet  crossref  elib
  •   .  .  . .
    Number of views:
    This page:124
    Full text:50
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020