RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2018, Volume 18, Issue 1, Pages 17–24 (Mi isu741)  

Scientific Part
Mathematics

Recurrence relations for polynomials orthonormal on Sobolev, generated by Laguerre polynomials

R. M. Gadzhimirzaev

Dagestan Scientific Center, Russian Academy of Sciences, 45, Gadjieva Str., Makhachkala, Russia, 367025

Abstract: In this paper we consider the system of polynomials $l_{r,n}^{\alpha}(x)$ ($r$ — natural number, $n=0, 1, \ldots$), orthonormal with respect to the Sobolev inner product (Sobolev orthonormal polynomials) of the following type $\langle f,g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_{0}^{\infty} f^{(r)}(t)g^{(r)}(t)\rho(t) dt$ and generated by the classical orthonormal Laguerre polynomials. Recurrence relations are obtained for the system of Sobolev orthonormal polynomials, which can be used for studying various properties of these polynomials and calculate their values for any $x$ and $n$. Moreover, we consider the system of the Laguerre functions $\mu_{n}^{\alpha}(x) = \sqrt{\rho(x)}l_{n}^{\alpha}(x)$, which generates a system of functions $\mu_{r, n}^{\alpha}(x)$ orthonormal with respect to the inner product of the following form $\langle \mu_{r,n}^\alpha,\mu_{r,k}^\alpha\rangle= \sum_{\nu=0}^{r-1}(\mu_{r,n}^\alpha(x))^{(\nu)}|_{x=0} (\mu_{r,k}^\alpha(x))^{(\nu)}|_{x=0}+ \int_{0}^{\infty} (\mu_{r,n}^\alpha(x))^{(r)}(\mu_{r,k}^\alpha(x))^{(r)} dx.$ For the generated system of functions $\mu_{r,n}^{\alpha}(x)$, recurrence relations for $\alpha=0$ are also obtained.

Key words: Laguerre polynomials, Sobolev-type inner product, Sobolev orthonormal polynomials, Laguerre functions.

DOI: https://doi.org/10.18500/1816-9791-2018-18-1-17-24

Full text: PDF file (154 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.15

Citation: R. M. Gadzhimirzaev, “Recurrence relations for polynomials orthonormal on Sobolev, generated by Laguerre polynomials”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 18:1 (2018), 17–24

Citation in format AMSBIB
\Bibitem{Gad18}
\by R.~M.~Gadzhimirzaev
\paper Recurrence relations for polynomials orthonormal on Sobolev, generated by Laguerre polynomials
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2018
\vol 18
\issue 1
\pages 17--24
\mathnet{http://mi.mathnet.ru/isu741}
\crossref{https://doi.org/10.18500/1816-9791-2018-18-1-17-24}
\elib{http://elibrary.ru/item.asp?id=35647727}


Linking options:
  • http://mi.mathnet.ru/eng/isu741
  • http://mi.mathnet.ru/eng/isu/v18/i1/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:151
    Full text:37
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019