RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2018, Volume 18, Issue 1, Pages 49–61 (Mi isu744)  

Scientific Part
Mathematics

On the representation of functions by absolutely convergent series by $\mathcal{H}$-system

K. A. Navasardyan

Yerevan State University, 1, Alex Manoogian Str., Yerevan, Republic of Armenia, 0025

Abstract: The paper deals with the representation of absolutely convergent series of functions in spaces of homogeneous type. The definition of a system of Haar type ($ \mathcal{H} $-system) associated to a dyadic family on a space of homogeneous type X is given in the Introduction. It is proved that for almost everywhere (a.e.) finite and measurable on a set $ X $ function $f$ there exists an absolutely convergent series by the system $ \mathcal {H} $, which converges to $ f $ a.e. on $ X $. From this theorem, in particular, it follows that if $ \mathcal{H} = \{h_n \} $ is a generalized Haar system generated by a bounded sequence $ \{p_k\} $, then for any a.e. finite on $ [0,1] $ and measurable function $f$ there exists an absolutely convergent series in the system $ \{h_n \} $, which converges a.e. to $ f (x) $. It is also proved, that if $X$ is a bounded set, then one can change the values of an a.e. finite and measurable function on a set of arbitrary small measure such that the Fourier series of the obtained function with respect to system $\mathcal{H}$ will converge uniformly. The paper results are obtained using the methods of metrical functions theory.

Key words: Haar type system, dyadic family, absolute convergence, uniform convergence.

DOI: https://doi.org/10.18500/1816-9791-2018-18-1-49-61

Full text: PDF file (208 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.51

Citation: K. A. Navasardyan, “On the representation of functions by absolutely convergent series by $\mathcal{H}$-system”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 18:1 (2018), 49–61

Citation in format AMSBIB
\Bibitem{Nav18}
\by K.~A.~Navasardyan
\paper On the representation of functions by absolutely convergent series by $\mathcal{H}$-system
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2018
\vol 18
\issue 1
\pages 49--61
\mathnet{http://mi.mathnet.ru/isu744}
\crossref{https://doi.org/10.18500/1816-9791-2018-18-1-49-61}
\elib{http://elibrary.ru/item.asp?id=35647730}


Linking options:
  • http://mi.mathnet.ru/eng/isu744
  • http://mi.mathnet.ru/eng/isu/v18/i1/p49

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:67
    Full text:18
    References:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019