RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2019, Volume 19, Issue 3, Pages 305–316 (Mi isu809)  

Scientific Part
Mechanics

Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift

E. Yu. Krylovaa, I. V. Kravtsovab, T. V. Yakovlevab, V. A. Kryskob

a Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
b Yuri Gagarin State Technical University of Saratov, 77 Politechnicheskaya St., Saratov 410054, Russia

Abstract: A theory of nonlinear dynamics of a flexible single-layer micropolar cylindrical shell of a network structure is constructed. The geometric nonlinearity is taken into account by the model of Theodor von Karman. We consider a nonclassical continuum shell model based on the Cosserat medium with constrained particle rotation (pseudocontinuum). It is assumed that the displacement and rotation fields are not independent. An additional independent material length parameter associated with the symmetric tensor of the rotation gradient is introduced into consideration. The equations of motion of the shell element, boundary and initial conditions are obtained from the variational principle of Ostrogradskii – Hamilton on the basis of kinematic hypotheses of the third approximation (Peleha – Sheremetyev – Reddy), allowing to take into account not only the rotation, but also the curvature of the normal after deformation. It is assumed that the cylindrical shell consists of n families of edges, each of which is characterized by an inclination angle with respect to the positive direction of the axis directed along the length of the shell and the distance between neighboring edges. The shell material is isotropic, elastic, and obeys Hooke's law. A dissipative mechanical system is considered. As a special case, the system of equations of motion for Kirchhoff – Love's micro-polar reticulated shell is presented. The theory constructed in this paper can be used, among other things, for studying the behavior of CNTs under the action of static and dynamic loads.

Key words: cylindrical shell, CNT, micropolar theory, Cosserat pseudocontinuum, Peleha – Sheremetyev – Reddy model, net structure, statics and dynamics, model Tymoshenko, the Kirchhoff – Love model.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00351_a
This work was supported by the Russian Foundation for Basic Research (project No. 18-01-00351a).


DOI: https://doi.org/10.18500/1816-9791-2019-19-3-305-316

Full text: PDF file (337 kB)

Bibliographic databases:

UDC: 539.3
Received: 20.10.2018
Accepted:20.12.2018

Citation: E. Yu. Krylova, I. V. Kravtsova, T. V. Yakovleva, V. A. Krysko, “Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 19:3 (2019), 305–316

Citation in format AMSBIB
\Bibitem{KryKraYak19}
\by E.~Yu.~Krylova, I.~V.~Kravtsova, T.~V.~Yakovleva, V.~A.~Krysko
\paper Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift
\jour Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform.
\yr 2019
\vol 19
\issue 3
\pages 305--316
\mathnet{http://mi.mathnet.ru/isu809}
\crossref{https://doi.org/10.18500/1816-9791-2019-19-3-305-316}
\elib{http://elibrary.ru/item.asp?id=39542334}


Linking options:
  • http://mi.mathnet.ru/eng/isu809
  • http://mi.mathnet.ru/eng/isu/v19/i3/p305

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:7
    Full text:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019