Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. Math. Mech. Inform., 2020, Volume 20, Issue 3, Pages 280–289 (Mi isu847)  

Scientific Part
Mathematics

On semigroups of relations with the operation of left and right rectangular products

D. A. Bredikhin

Yuri Gagarin State Technical University of Saratov, 77 Politechnicheskaya St., Saratov 410054, Russia

Abstract: A set of binary relations closed with respect to some collection of operations on relations forms an algebra called an algebra of relations. The class of all algebras (partially ordered algebras) isomorphic to algebras (partially ordered by set-theoretic inclusion $\subseteq$ algebras) of relations with operations from $\Omega$ is denoted by $\mathrm{R}\{\Omega\}$ ($R\{\Omega,\subseteq\}$). An operation on relations is called primitive-positive if it can be defined by a formula of the first-order predicate calculus containing only existential quantifiers and conjunctions in its prenex normal form. We consider algebras of relations with associative primitive-positive operations $\ast$ and $\star$, defined by the following formulas $\rho\ast\sigma=\{(u,v): (\exists s,t,w) (u,s)\in \rho \wedge (t,w)\in \sigma\}$ and $\rho\star\sigma=\{(u,v): (\exists s,t,w) (s,t)\in \rho \wedge (w,v)\in \sigma\}$ respectively. The axiom systems for the classes $\mathrm{R}\{\ast\}$, $\mathrm{R}\{\ast,\subseteq\}$, $\mathrm{R}\{\star\}$, $\mathrm{R}\{\star,\subseteq\}$, and bases of quasi-identities and identities for quasi-varieties and varieties generated by these classes are found.

Key words: algebra of relations, primitive positive operation, identity, variety, quasi-identity, quasi-variety, semigroup, partially ordered semigroup.

DOI: https://doi.org/10.18500/1816-9791-2020-20-3-280-289

Full text: PDF file (281 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 501.1
Received: 11.06.2019
Revised: 28.06.2019
Language:

Citation: D. A. Bredikhin, “On semigroups of relations with the operation of left and right rectangular products”, Izv. Saratov Univ. Math. Mech. Inform., 20:3 (2020), 280–289

Citation in format AMSBIB
\Bibitem{Bre20}
\by D.~A.~Bredikhin
\paper On semigroups of relations with the operation of left and right rectangular products
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 3
\pages 280--289
\mathnet{http://mi.mathnet.ru/isu847}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-3-280-289}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000565963700001}


Linking options:
  • http://mi.mathnet.ru/eng/isu847
  • http://mi.mathnet.ru/eng/isu/v20/i3/p280

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:17
    Full text:6
    References:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021