Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Saratov Univ. Math. Mech. Inform., 2008, Volume 8, Issue 1, Pages 25–31 (Mi isu98)  

This article is cited in 7 scientific papers (total in 7 papers)

Mathematics

About approximation multinominals, orthogonal on any grids

A. A. Nurmagomedov

Daghestan State Pedagogical University, Chair of Mathematical Analysis

Abstract: In this work are investigated approximation properties of multinominals $\hat p_n(x)$, orthogonal with weight $\Delta t_j$ on the any grids consisting of final number of points of a piece $[-1,1]$. Namely the approximation formula, in which is established at increase $n$ together with $N$, approximation behaviour of these multinominals close to approximation behaviour of multinominals Lasiandra.

DOI: https://doi.org/10.18500/1816-9791-2008-8-1-25-31

Full text: PDF file (158 kB)
References: PDF file   HTML file

UDC: 517.5

Citation: A. A. Nurmagomedov, “About approximation multinominals, orthogonal on any grids”, Izv. Saratov Univ. Math. Mech. Inform., 8:1 (2008), 25–31

Citation in format AMSBIB
\Bibitem{Nur08}
\by A.~A.~Nurmagomedov
\paper About approximation multinominals, orthogonal on any grids
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2008
\vol 8
\issue 1
\pages 25--31
\mathnet{http://mi.mathnet.ru/isu98}
\crossref{https://doi.org/10.18500/1816-9791-2008-8-1-25-31}


Linking options:
  • http://mi.mathnet.ru/eng/isu98
  • http://mi.mathnet.ru/eng/isu/v8/i1/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Nurmagomedov, “Asimptoticheskie svoistva mnogochlenov $\hat p_n^{\alpha,\beta}(x)$, ortogonalnykh na proizvolnykh setkakh v sluchae tselykh $\alpha$ i $\beta$”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:2 (2010), 10–19  mathnet  crossref
    2. A. A. Nurmagomedov, “Mnogochleny, ortogonalnye na neravnomernykh setkakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:3(2) (2011), 29–42  mathnet  crossref  elib
    3. Magomed-Kasumov M.G., “Asimptotika polinomov dvukh peremennykh, ortogonalnykh na diskretnykh setkakh”, Vestnik Dagestanskogo nauchnogo tsentra, 2011, no. 41, 17–22  elib
    4. Sultanov E.Sh., “Asimptoticheskie svoistva polinomov, ortogonalnykh na setkakh, prinadlezhaschikh dvum otrezkam”, Vestnik Dagestanskogo nauchnogo tsentra, 2011, no. 40, 5–9  elib
    5. A. A. Nurmagomedov, “Convergence of Fourier sums by polynomials orthogonal on arbitrary lattice”, Russian Math. (Iz. VUZ), 56:7 (2012), 52–54  mathnet  crossref  mathscinet
    6. M. S. Sultanakhmedov, “Asimptoticheskie svoistva i vesovye otsenki polinomov, ortogonalnykh na neravnomernoi setke s vesom Yakobi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:1 (2014), 38–47  mathnet  crossref  elib
    7. M. S. Sultanakhmedov, “On the convergence of the least square method in case of non-uniform grids”, Probl. anal. Issues Anal., 8(26):3 (2019), 166–186  mathnet  crossref  elib
  • Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Number of views:
    This page:233
    Full text:90
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021