|
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, Number 1, Pages 44–65
(Mi ivm1253)
|
|
|
|
This article is cited in 6 scientific papers (total in 7 papers)
Fejér processes in theory and practice: recent results
I. I. Eremin, L. D. Popov Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract:
In this paper we briefly survey the recent results of the theory of Fejér mappings and processes as applied to solving various mathematical problems, including structured systems of linear and convex inequalities, operator equations, as well as problems of linear and quadratic programming which are not necessarily solvable (improper ones).
Keywords:
Fejér mappings and methods, systems of convex inequalities, mathematical programming, duality theory, nonstationary processes, contradictory statements.
Full text:
PDF file (292 kB)
References:
PDF file
HTML file
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:1, 36–55
Bibliographic databases:
UDC:
519.6 Received: 01.04.2008
Citation:
I. I. Eremin, L. D. Popov, “Fejér processes in theory and practice: recent results”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1, 44–65; Russian Math. (Iz. VUZ), 53:1 (2009), 36–55
Citation in format AMSBIB
\Bibitem{ErePop09}
\by I.~I.~Eremin, L.~D.~Popov
\paper Fej\'er processes in theory and practice: recent results
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2009
\issue 1
\pages 44--65
\mathnet{http://mi.mathnet.ru/ivm1253}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2530589}
\zmath{https://zbmath.org/?q=an:05621399}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2009
\vol 53
\issue 1
\pages 36--55
\crossref{https://doi.org/10.3103/S1066369X09010022}
Linking options:
http://mi.mathnet.ru/eng/ivm1253 http://mi.mathnet.ru/eng/ivm/y2009/i1/p44
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. S. Velichko, “O vybore shaga v proektivnykh algoritmakh dlya zadach lineinogo programmirovaniya bolshoi razmernosti”, Dalnevost. matem. zhurn., 12:2 (2012), 160–170
-
Combettes P.L., Vu B.C., “Variable Metric Quasi-Fejer Monotonicity”, Nonlinear Anal.-Theory Methods Appl., 78 (2013), 17–31
-
L. D. Popov, “Ob adaptatsii metoda nagruzhennogo funktsionala k nesobstvennym zadacham matematicheskogo programmirovaniya”, Tr. IMM UrO RAN, 19, no. 2, 2013, 247–255
-
V. I. Berdyshev, V. V. Vasin, S. V. Matveev, A. A. Makhnev, Yu. N. Subbotin, N. N. Subbotina, V. N. Ushakov, M. Yu. Khachai, A. G. Chentsov, “Ivan Ivanovich Eremin”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 1–8
-
Alotaibi A., Combettes P.L., Shahzad N., “Solving Coupled Composite Monotone Inclusions By Successive Fejer Approximations of Their Kuhn-Tucker Set”, SIAM J. Optim., 24:4 (2014), 2076–2095
-
Combettes P.L., Pesquet J.-Ch., “Stochastic Quasi-Fejer Block-Coordinate Fixed Point Iterations With Random Sweeping”, SIAM J. Optim., 25:2 (2015), 1221–1248
-
I. M. Sokolinskaya, L. B. Sokolinskii, “Parallelnaya realizatsiya sledyaschego algoritma dlya resheniya nestatsionarnykh zadach lineinogo programmirovaniya”, Vestn. YuUrGU. Ser. Vych. matem. inform., 5:2 (2016), 15–29
|
Number of views: |
This page: | 521 | Full text: | 163 | References: | 45 | First page: | 20 |
|