RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. вузов. Матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Изв. вузов. Матем., 2008, номер 5, страницы 4–13 (Mi ivm1273)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Операторы Харди и Беллмана в пространствах, связанных с $H(\mathbb T)$ и $BMO(\mathbb T)$

С. С. Волосивецa, Б. И. Голубовb

a кафедра теории функций и приближений, механико-математический факультет, Саратовский государственный университет
b кафедра высшей математики, Московский физико-технический институт, Московская область, г. Долгопрудный

Аннотация: Пусть $1\le p<\infty$ и функция $f\in L^p[0,\pi]$ имеет ряд Фурье $\sum\limits^\infty_{n=1}a_n\cos nx$. Согласно результату Харди ряд $\sum\limits^\infty_{n=1}n^{-1}\sum\limits^n_{k=1}a_k\cos nx$ является рядом Фурье некоторой функции $\mathcal H(f)\in L^p[0,\pi]$. Если же $1< p\le \infty$ и $f\in L^p[0,\pi]$, то ряд $\sum\limits^\infty_{n=1}\sum\limits^\infty_{k=n}k^{-1}a_k\cos nx$ является рядом Фурье некоторой функции $\mathcal B(f)\in L^p[0,\pi]$. Аналогичные результаты верны для синус-рядов, что позволяет определить оператор Харди $\mathcal H$ на $L^p(\mathbb T)$, $1\le p<\infty$, а оператор Беллмана $\mathcal B$ — на $L^p(\mathbb T)$, $1< p\le\infty$. В работе доказано, что оператор Беллмана ограниченно действует в $VMO(\mathbb T)$, а оператор Харди отображает некоторое подпространство $C(\mathbb T)$ также в $VMO(\mathbb T)$. Установлена также инвариантность некоторых классов функций с заданными мажорантами модулей непрерывности или наилучших приближений в пространствах $H(\mathbb T)$, $L(\mathbb T)$, $VMO(\mathbb T)$ относительно операторов Харди и Беллмана.

Ключевые слова: преобразование Харди, преобразование Беллмана, BMO, VMO, мажоранта модуля непрерывности.

Полный текст: PDF файл (209 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, 52:5, 1–8

Реферативные базы данных:

УДК: 517.51
Поступила: 02.10.2007

Образец цитирования: С. С. Волосивец, Б. И. Голубов, “Операторы Харди и Беллмана в пространствах, связанных с $H(\mathbb T)$ и $BMO(\mathbb T)$”, Изв. вузов. Матем., 2008, № 5, 4–13; Russian Math. (Iz. VUZ), 52:5 (2008), 1–8

Цитирование в формате AMSBIB
\RBibitem{VolGol08}
\by С.~С.~Волосивец, Б.~И.~Голубов
\paper Операторы Харди и Беллмана в пространствах, связанных с $H(\mathbb T)$ и $BMO(\mathbb T)$
\jour Изв. вузов. Матем.
\yr 2008
\issue 5
\pages 4--13
\mathnet{http://mi.mathnet.ru/ivm1273}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2445179}
\zmath{https://zbmath.org/?q=an:1157.42305}
\elib{http://elibrary.ru/item.asp?id=11034929}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 5
\pages 1--8
\crossref{https://doi.org/10.3103/S1066369X08050010}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/ivm1273
  • http://mi.mathnet.ru/rus/ivm/y2008/i5/p4

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. С. С. Волосивец, “Оператор Харди–Гольдберга и его сопряженный в пространствах Харди и $BMO(\mathbb T)$”, Изв. вузов. Матем., 2015, № 2, 18–29  mathnet; S. S. Volosivets, “Hardy–Goldberg operator and its conjugate one in Hardy spaces and $BMO(\mathbb T)$”, Russian Math. (Iz. VUZ), 59:2 (2015), 14–24  crossref
  • Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Просмотров:
    Эта страница:395
    Полный текст:103
    Литература:64
    Первая стр.:7
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020