|
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, Number 4, Pages 39–42
(Mi ivm1318)
|
|
|
|
Regularization of a three-element functional equation
S. A. Modina Kazan State Power Engineering University
Abstract:
In this paper we study the three-element functional equation
$$
(V\Phi)(z)\equiv\Phi(iz)+\Phi(-iz)+G(z)\Phi(\frac1z)=g(z),\qquad z\in R,
$$
subject to
$$
R\colon |z|<1,\quad|\arg z|<\frac\pi4.
$$
We assume that the coefficients $G(z)$ and $g(z)$ are holomorphic in $R$ and their boundary values $G^+(t)$ and $g^+(t)$ belong to $H(\Gamma)$, $G(t)G(t^{-1})=1$. We seek for solutions $\Phi(z)$ in the class of functions holomorphic outside of $\overline R$ such that they vanish at infinity and their boundary values
$\Phi^-(t)$ also belong to $H(\Gamma)$.
Using the method of equivalent regularization, we reduce the problem to the 2nd kind integral Fredholm equation.
Keywords:
functional equation, holomorphic function, regularization method, rotation group of a dihedron.
Full text:
PDF file (144 kB)
References:
PDF file
HTML file
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:4, 31–33
Bibliographic databases:
UDC:
517.51 Received: 18.01.2007
Citation:
S. A. Modina, “Regularization of a three-element functional equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 4, 39–42; Russian Math. (Iz. VUZ), 53:4 (2009), 31–33
Citation in format AMSBIB
\Bibitem{Mod09}
\by S.~A.~Modina
\paper Regularization of a~three-element functional equation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2009
\issue 4
\pages 39--42
\mathnet{http://mi.mathnet.ru/ivm1318}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2581472}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2009
\vol 53
\issue 4
\pages 31--33
\crossref{https://doi.org/10.3103/S1066369X09040057}
Linking options:
http://mi.mathnet.ru/eng/ivm1318 http://mi.mathnet.ru/eng/ivm/y2009/i4/p39
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 206 | Full text: | 24 | References: | 18 | First page: | 4 |
|