RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Vyssh. Uchebn. Zaved. Mat., 2004, Number 3, Pages 3–6 (Mi ivm132)  

This article is cited in 6 scientific papers (total in 6 papers)

Weakly regular modules

A. N. Abyzov

Kazan State Pedagogical University

Full text: PDF file (108 kB)
References: PDF file   HTML file

English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2004, 48:3, 1–3

Bibliographic databases:
UDC: 512.552
Received: 08.02.2002

Citation: A. N. Abyzov, “Weakly regular modules”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3, 3–6; Russian Math. (Iz. VUZ), 48:3 (2004), 1–3

Citation in format AMSBIB
\Bibitem{Aby04}
\by A.~N.~Abyzov
\paper Weakly regular modules
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2004
\issue 3
\pages 3--6
\mathnet{http://mi.mathnet.ru/ivm132}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2070828}
\zmath{https://zbmath.org/?q=an:1105.16008}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2004
\vol 48
\issue 3
\pages 1--3


Linking options:
  • http://mi.mathnet.ru/eng/ivm132
  • http://mi.mathnet.ru/eng/ivm/y2004/i3/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Tuganbaev, “Modules with many direct summands”, J. Math. Sci., 152:2 (2008), 298–303  mathnet  crossref  mathscinet  zmath
    2. A. A. Tuganbaev, “Rings over which all modules are semiregular”, J. Math. Sci., 154:2 (2008), 249–255  mathnet  crossref  mathscinet  zmath
    3. A. A. Tuganbaev, “Rings over which all modules are $I_0$-modules”, J. Math. Sci., 156:2 (2009), 336–341  mathnet  crossref  mathscinet  zmath
    4. A. N. Abyzov, A. A. Tuganbaev, “Rings over which all modules are $I_0$-modules. II”, J. Math. Sci., 162:5 (2009), 587–593  mathnet  crossref  mathscinet  zmath
    5. A. A. Tuganbaev, “Rings without infinite sets of noncentral orthogonal idempotents”, J. Math. Sci., 162:5 (2009), 730–739  mathnet  crossref  mathscinet  zmath
    6. A. N. Abyzov, A. A. Tuganbaev, “Submodules and direct summands”, J. Math. Sci., 164:1 (2010), 1–20  mathnet  crossref  mathscinet
  • Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Number of views:
    This page:171
    Full text:69
    References:50
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020