RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Vyssh. Uchebn. Zaved. Mat., 2009, Number 8, Pages 73–82 (Mi ivm3058)  

The limit cycles of a second-order system of differential equations: the method of small forms

M. T. Teryokhin

Chair of Mathematical Analysis, Ryazan State University, Ryazan, Russia

Abstract: In this paper we investigate the existence of limit cycles of a system of the second-order differential equations with a vector parameter.
We propose a method for representing a solution as a sum of forms with respect to the initial value and the parameter; we call this technique the method of small forms. We establish the conditions under which a sufficiently small neighborhood of the equilibrium point contains no limit cycles. We construct a polynomial, whose positive roots of an odd multiplicity define the lower bound for the number of cycles, and prime positive roots (other positive roots do not exist) define the number of limit cycles in a sufficiently small neighborhood of the equilibrium point.
We prove theorems, whose conditions guarantee that a positive root of an odd multiplicity defines a unique limit cycle, but a positive root of an even multiplicity defines exactly two limit cycles. We propose a method for defining the type of the stability of limit cycles.

Keywords: stable (unstable) limit cycle, polynomial, prime roots, roots of even and odd multiplicity, contraction operator, fixed point.

Full text: PDF file (214 kB)
References: PDF file   HTML file

English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:8, 60–68

Bibliographic databases:

UDC: 517.925
Received: 26.04.2007

Citation: M. T. Teryokhin, “The limit cycles of a second-order system of differential equations: the method of small forms”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 8, 73–82; Russian Math. (Iz. VUZ), 53:8 (2009), 60–68

Citation in format AMSBIB
\Bibitem{Ter09}
\by M.~T.~Teryokhin
\paper The limit cycles of a~second-order system of differential equations: the method of small forms
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2009
\issue 8
\pages 73--82
\mathnet{http://mi.mathnet.ru/ivm3058}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2584261}
\zmath{https://zbmath.org/?q=an:1192.34043}
\elib{http://elibrary.ru/item.asp?id=12514184}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2009
\vol 53
\issue 8
\pages 60--68
\crossref{https://doi.org/10.3103/S1066369X09080106}


Linking options:
  • http://mi.mathnet.ru/eng/ivm3058
  • http://mi.mathnet.ru/eng/ivm/y2009/i8/p73

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Number of views:
    This page:467
    Full text:111
    References:30
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019