|
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, Number 8, Pages 46–59
(Mi ivm4096)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
The accuracy of the representation of a continuous $2\pi$-periodic function by means of linear approximation methods
V. V. Zhuk Leningrad
Full text:
PDF file (822 kB)
Bibliographic databases:
UDC:
517.512 Received: 01.05.1970
Citation:
V. V. Zhuk, “The accuracy of the representation of a continuous $2\pi$-periodic function by means of linear approximation methods”, Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 8, 46–59
Citation in format AMSBIB
\Bibitem{Zhu72}
\by V.~V.~Zhuk
\paper The accuracy of the representation of a~continuous $2\pi$-periodic function by means of linear approximation methods
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 1972
\issue 8
\pages 46--59
\mathnet{http://mi.mathnet.ru/ivm4096}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=316955}
\zmath{https://zbmath.org/?q=an:0254.42002}
Linking options:
http://mi.mathnet.ru/eng/ivm4096 http://mi.mathnet.ru/eng/ivm/y1972/i8/p46
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Zhuk, “Approximating periodic functions in Hölder type metrics by the Fourier sums and the Riesz means”, J. Math. Sci. (N. Y.), 150:3 (2008), 2045–2055
-
O. L. Vinogradov, V. V. Zhuk, “Estimates of functionals by the second moduli of continuity of even derivatives”, J. Math. Sci. (N. Y.), 202:4 (2014), 526–540
|
Number of views: |
This page: | 105 | Full text: | 49 | First page: | 1 |
|