RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Vyssh. Uchebn. Zaved. Mat., 1998, Number 8, Pages 48–55 (Mi ivm491)  

This article is cited in 6 scientific papers (total in 6 papers)

Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure

G. Sh. Skvortsova, O. E. Tikhonov

Kazan State University

Full text: PDF file (204 kB)
References: PDF file   HTML file

English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 1998, 42:8, 46–52

Bibliographic databases:
UDC: 517.982
Received: 27.11.1995

Citation: G. Sh. Skvortsova, O. E. Tikhonov, “Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 8, 48–55; Russian Math. (Iz. VUZ), 42:8 (1998), 46–52

Citation in format AMSBIB
\Bibitem{SkvTik98}
\by G.~Sh.~Skvortsova, O.~E.~Tikhonov
\paper Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 1998
\issue 8
\pages 48--55
\mathnet{http://mi.mathnet.ru/ivm491}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1657386}
\zmath{https://zbmath.org/?q=an:1115.46306}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 1998
\vol 42
\issue 8
\pages 46--52


Linking options:
  • http://mi.mathnet.ru/eng/ivm491
  • http://mi.mathnet.ru/eng/ivm/y1998/i8/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. Sh. Skvortsova, “On the weak sequential completeness of quotient spaces of the space of integrable operators”, Russian Math. (Iz. VUZ), 46:9 (2002), 68–71  mathnet  mathscinet  zmath
    2. Dodds P.G., Dodds T.K., Sukochev F.A., Tikhonov O.Y., “A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure”, Positivity, 9:3 (2005), 457–484  crossref  mathscinet  zmath  isi  elib
    3. A. M. Bikchentaev, “Local Convergence in Measure on Semifinite von Neumann Algebras”, Proc. Steklov Inst. Math., 255 (2006), 35–48  mathnet  crossref  mathscinet  elib
    4. A. M. Bikchentaev, “Local Convergence in Measure on Semifinite von Neumann Algebras, II”, Math. Notes, 82:5 (2007), 703–707  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Rikchentaev A.M., “Local Convergence in Measure on Semifinite Von Neumann Algebras. III”, Hot Topics in Operator Theory, Conference Proceedings, eds. Douglas R., Esterle J., Gaspar D., Timotin D., Vasilescu F., Theta Foundation, 2008, 1–12  mathscinet  isi
    6. Novikov A.A., Tikhonov O.E., “Measures on Orthoideals and l-1-Spaces Associated With Positive Operators”, Lobachevskii J. Math., 37:4, SI (2016), 497–499  crossref  isi
  • Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Number of views:
    This page:268
    Full text:112
    References:43
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019