RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Vyssh. Uchebn. Zaved. Mat., 2000, Number 3, Pages 33–38 (Mi ivm730)  

This article is cited in 9 scientific papers (total in 9 papers)

Deformations of a Lie algebra of type $G_2$ of characteristic three

S. A. Kirillov, M. I. Kuznetsov, N. G. Chebochko

N. I. Lobachevski State University of Nizhni Novgorod

Full text: PDF file (202 kB)
References: PDF file   HTML file

English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2000, 44:3, 31–36

Bibliographic databases:
UDC: 512.554.31
Received: 19.01.1997

Citation: S. A. Kirillov, M. I. Kuznetsov, N. G. Chebochko, “Deformations of a Lie algebra of type $G_2$ of characteristic three”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 3, 33–38; Russian Math. (Iz. VUZ), 44:3 (2000), 31–36

Citation in format AMSBIB
\Bibitem{KirKuzChe00}
\by S.~A.~Kirillov, M.~I.~Kuznetsov, N.~G.~Chebochko
\paper Deformations of a~Lie algebra of type $G_2$ of characteristic three
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2000
\issue 3
\pages 33--38
\mathnet{http://mi.mathnet.ru/ivm730}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1775026}
\zmath{https://zbmath.org/?q=an:1009.17016}
\elib{http://elibrary.ru/item.asp?id=9085678}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2000
\vol 44
\issue 3
\pages 31--36


Linking options:
  • http://mi.mathnet.ru/eng/ivm730
  • http://mi.mathnet.ru/eng/ivm/y2000/i3/p33

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. G. Chebochko, “Deformations of classical Lie algebras with homogeneous root system in characteristic two. I”, Sb. Math., 196:9 (2005), 1371–1402  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Kuznetsov A.P., Savin A.V., Savin D.V., “Features in dynamics of an almost conservative Ikeda map”, Technical Physics Letters, 33:2 (2007), 122–124  crossref  adsnasa  isi  elib
    3. Viviani F., “Infinitesimal deformations of restricted simple Lie algebras I”, Journal of Algebra, 320:12 (2008), 4102–4131  crossref  mathscinet  zmath  isi
    4. D. V. Reshetnikov, “Calculation of cohomology groups of the Lie algebras of series $B_n$ and $C_n$”, Russian Math. (Iz. VUZ), 53:8 (2009), 58–59  mathnet  crossref  mathscinet  zmath
    5. Bouarroudj S., Grozman P., Lebedev A., Leites D., “Divided power (co)homology. Presentations of Simple Finite Dimensional Modular Lie Superalgebras with Cartan Matrix”, Homology Homotopy Appl, 12:1 (2010), 237–278  crossref  mathscinet  zmath  isi  elib
    6. Viviani F., “Restricted Infinitesimal Deformations of Restricted Simple Lie Algebras”, J. Algebra. Appl., 11:5 (2012), 1250091  crossref  mathscinet  zmath  isi  elib
    7. Sh. Sh. Ibraev, “On the First Cohomology of an Algebraic Group and Its Lie Algebra in Positive Characteristic”, Math. Notes, 96:4 (2014), 491–498  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. Chebochko N.G., Kuznetsov M.I., “Integrable Cocycles and Global Deformations of Lie Algebra of Type G(2) in Characteristic 2”, Commun. Algebr., 45:7 (2017), 2969–2977  crossref  isi
    9. M. I. Kuznetsov, A. V. Kondrateva, N. G. Chebochko, “Simple $14$-dimensional Lie algebras in characteristic two”, J. Math. Sci. (N. Y.), 240:4 (2019), 474–480  mathnet  crossref
  • Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Number of views:
    This page:181
    Full text:61
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020