|
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, Number 9, Pages 3–9
(Mi ivm7925)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Some applications of $P'$-sequences in studying boundary properties of arbitrary harmonic functions
S. L. Berberyan Chair of Mathematics and Mathematical Modeling, Russian-Armenian (Slavonic) University, Yerevan, Republic of Armenia
Abstract:
In this paper we study some boundary properties of harmonic functions defined in the unit disk in dependence of the location of $P'$-sequences on chords and horocycles. We introduce notions of $P'$-chords, normal chords, $P'$-horocycles, and normal horocycles.
Keywords:
harmonic functions, non-Euclidean circles, radii and distances, $P'$-sequence, $P'$-chord, horocyclic point, horocyclic angle.
Full text:
PDF file (184 kB)
References:
PDF file
HTML file
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:9, 1–6
Bibliographic databases:
UDC:
519.8 Received: 16.06.2010
Citation:
S. L. Berberyan, “Some applications of $P'$-sequences in studying boundary properties of arbitrary harmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9, 3–9; Russian Math. (Iz. VUZ), 55:9 (2011), 1–6
Citation in format AMSBIB
\Bibitem{Ber11}
\by S.~L.~Berberyan
\paper Some applications of $P'$-sequences in studying boundary properties of arbitrary harmonic functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2011
\issue 9
\pages 3--9
\mathnet{http://mi.mathnet.ru/ivm7925}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2931770}
\elib{https://elibrary.ru/item.asp?id=16458599}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2011
\vol 55
\issue 9
\pages 1--6
\crossref{https://doi.org/10.3103/S1066369X11090015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80055072083}
Linking options:
http://mi.mathnet.ru/eng/ivm7925 http://mi.mathnet.ru/eng/ivm/y2011/i9/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. L. Berberyan, “On boundary points of arbitrary harmonic functions”, Russian Math. (Iz. VUZ), 58:5 (2014), 1–7
-
S. L. Berberyan, “On boundary theorems of uniqueness for logarithmically-subharmonic functions”, Russian Math. (Iz. VUZ), 60:9 (2016), 1–6
-
S. L. Berberian, “Refinement of the Plessner theorem and Plessner points for arbitrary harmonic functions”, Moscow University Mathematics Bulletin, 72:4 (2017), 169–172
|
Number of views: |
This page: | 180 | Full text: | 24 | References: | 23 | First page: | 11 |
|