Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Vyssh. Uchebn. Zaved. Mat., 2011, Number 11, Pages 41–45 (Mi ivm8393)  

This article is cited in 2 scientific papers (total in 2 papers)

The structure of dendrites with the periodic point property

E. N. Makhrova

Chair of Differential Equations and Mathematical Analysis, Nizhni Novgorod State University, Nizhni Novgorod, Russia

Abstract: In this paper we study the structure of dendrites with the periodic point property, i.e., dendrites $X$ such that for any continuous map $f\colon X\to X$ and any subcontinuum $Y\subset X$ the condition $Y\subset f(Y)$ implies that $Y$ contains a periodic point of $f$.

Keywords: dendrite, continuous map, periodic points.

Full text: PDF file (179 kB)
References: PDF file   HTML file

English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:11, 33–37

Bibliographic databases:

UDC: 517.938
Received: 28.10.2010

Citation: E. N. Makhrova, “The structure of dendrites with the periodic point property”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 11, 41–45; Russian Math. (Iz. VUZ), 55:11 (2011), 33–37

Citation in format AMSBIB
\Bibitem{Mak11}
\by E.~N.~Makhrova
\paper The structure of dendrites with the periodic point property
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2011
\issue 11
\pages 41--45
\mathnet{http://mi.mathnet.ru/ivm8393}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2963178}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2011
\vol 55
\issue 11
\pages 33--37
\crossref{https://doi.org/10.3103/S1066369X11110053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856251847}


Linking options:
  • http://mi.mathnet.ru/eng/ivm8393
  • http://mi.mathnet.ru/eng/ivm/y2011/i11/p41

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Makhrova E., European Conference - Workshop Nonlinear Maps and Applications, Journal of Physics Conference Series, 990, IOP Publishing Ltd, 2018  crossref  mathscinet  isi  scopus
    2. L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881  mathnet  crossref  crossref
  • Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Number of views:
    This page:288
    Full text:98
    References:53
    First page:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022