|
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, Number 10, Pages 74–78
(Mi ivm8746)
|
|
|
|
Brief communications
Finite-dimensional simple Lie algebras with a subalgebra lattice of length 3
A. G. Gein Chair of Algebra and Discrete Mathematics, Ural Federal University, Ekaterinburg, Russia
Abstract:
Lie algebras with a subalgebra lattice of length 2 are well-known. To study a subalgebra lattice of greater length, it is useful to get some information on Lie algebras with a subalgebra lattice of length 3. We show that a finite-dimensional simple Lie algebra over a field of characteristic 0 or a perfect field of prime characteristic greater than 5 whose subalgebra lattice has length 3 may be one of four types.
Keywords:
simple Lie algebras, subalgebra lattices, minimal algebras.
Full text:
PDF file (142 kB)
References:
PDF file
HTML file
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:10, 62–65
Bibliographic databases:
UDC:
512.554 Presented by the member of Editorial Board: Л. Н. Шеврин Received: 24.02.2012
Citation:
A. G. Gein, “Finite-dimensional simple Lie algebras with a subalgebra lattice of length 3”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 10, 74–78; Russian Math. (Iz. VUZ), 56:10 (2012), 62–65
Citation in format AMSBIB
\Bibitem{Gei12}
\by A.~G.~Gein
\paper Finite-dimensional simple Lie algebras with a~subalgebra lattice of length~3
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 10
\pages 74--78
\mathnet{http://mi.mathnet.ru/ivm8746}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3137060}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 10
\pages 62--65
\crossref{https://doi.org/10.3103/S1066369X12100064}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869425697}
Linking options:
http://mi.mathnet.ru/eng/ivm8746 http://mi.mathnet.ru/eng/ivm/y2012/i10/p74
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 134 | Full text: | 31 | References: | 15 | First page: | 5 |
|