RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Vyssh. Uchebn. Zaved. Mat., 2017, Number 3, Pages 24–36 (Mi ivm9214)  

Differential-geometric structure associated with Lagrangian and its dynamic interpretation

A. K. Rybnikov

Moscow State University, 1 Leninskie gory, GSP-1, Moscow, 119991 Russia

Abstract: The paper is devoted to investigation of differential-geometric structure associated with Lagrangian $L$ depending of $n$ functions of one variable $t$ and their derivatives by means of Cartan–Laptev method. We construct a fundamental object of a structure associated with Lagrangian. We also construct a covector $E_i$ $(i=1,\dotsc,n)$ embraced by prolonged fundamental object so that the system of equalities $E_i=0$ is an invariant representation of the Euler equations for the variational functional. Due to this, there is no necessity to connect Euler equations with the variational problem. Moreover, we distinguish by invariant means the class of special Lagrangians generating connection in the bundle of centroaffine structure over the base $M$. In case when Lagrangian $L$ is special, there exist a relative invariant $\Pi$ defined on $M$ which generates covector field on $M$ and fibered metric in the bundle of centroaffine structure over the base $M$.

Keywords: differential-geometric structure, fundamental object, lagrangian, fiber bundle, connection in principal fibre bundle.

Full text: PDF file (215 kB)
References: PDF file   HTML file

English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:3, 20–30

Bibliographic databases:

UDC: 514.76:531.01
Received: 25.08.2015

Citation: A. K. Rybnikov, “Differential-geometric structure associated with Lagrangian and its dynamic interpretation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3, 24–36; Russian Math. (Iz. VUZ), 61:3 (2017), 20–30

Citation in format AMSBIB
\Bibitem{Ryb17}
\by A.~K.~Rybnikov
\paper Differential-geometric structure associated with Lagrangian and its dynamic interpretation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 3
\pages 24--36
\mathnet{http://mi.mathnet.ru/ivm9214}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 3
\pages 20--30
\crossref{https://doi.org/10.3103/S1066369X17030033}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000408837700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014800213}


Linking options:
  • http://mi.mathnet.ru/eng/ivm9214
  • http://mi.mathnet.ru/eng/ivm/y2017/i3/p24

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Number of views:
    This page:70
    Full text:17
    References:16
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020