|
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, Number 4, Pages 15–22
(Mi ivm9224)
|
|
|
|
Inner derivations of simple Lie pencils of rank $1$
N. A. Koreshkov Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Abstract:
We prove that simple Lie pencils of rank $1$ over algebraically closed field $P$ of characteristic 0, whose operators of left multiplications have the form of sandwich algebra $M_3(U,\mathcal{D}')$, where $U$ is a subspace of all skew-symmetric matrices in $M_3(P)$, $\mathcal{D}'$ is any subspace containing $\langle E\rangle$ in a space of all diagonal matrices $\mathcal{D}$ in $M_3(P)$.
Keywords:
Lie pencil, Cartan subalgebra, torus, inner derivation, sandwich algebra.
Full text:
PDF file (192 kB)
References:
PDF file
HTML file
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:4, 11–17
Bibliographic databases:
UDC:
512.554 Received: 29.09.2015
Citation:
N. A. Koreshkov, “Inner derivations of simple Lie pencils of rank $1$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4, 15–22; Russian Math. (Iz. VUZ), 61:4 (2017), 11–17
Citation in format AMSBIB
\Bibitem{Kor17}
\by N.~A.~Koreshkov
\paper Inner derivations of simple Lie pencils of rank~$1$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 4
\pages 15--22
\mathnet{http://mi.mathnet.ru/ivm9224}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 4
\pages 11--17
\crossref{https://doi.org/10.3103/S1066369X1704003X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000408841300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016755831}
Linking options:
http://mi.mathnet.ru/eng/ivm9224 http://mi.mathnet.ru/eng/ivm/y2017/i4/p15
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 47 | Full text: | 10 | References: | 17 | First page: | 6 |
|