|
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, Number 4, Pages 86–97
(Mi ivm9351)
|
|
|
|
On solvability of linear matrix boundary-value problem
S. M. Chuiko Donbass State Pedagogical University,
19 Generala Batyuka str., Slavyansk, 84116 Ukraine
Abstract:
We find conditions of solvability and a construction of generalized Green's operator of linear matrix boundary-value problem; at that, we propose an operator which reduces a linear matrix equation to traditional linear Noetherian boundary-value problem. To solve a linear matrix system we use an operator which reduces a linear matrix equation to a linear algebraic equation with rectangular matrix.
Keywords:
Green operator, Noetherian boundary-value problem, matrix differential equation.
Full text:
PDF file (213 kB)
References:
PDF file
HTML file
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:4, 74–85
Bibliographic databases:
UDC:
517.983 Received: 15.01.2017
Citation:
S. M. Chuiko, “On solvability of linear matrix boundary-value problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 4, 86–97; Russian Math. (Iz. VUZ), 62:4 (2018), 74–85
Citation in format AMSBIB
\Bibitem{Chu18}
\by S.~M.~Chuiko
\paper On solvability of linear matrix boundary-value problem
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 4
\pages 86--97
\mathnet{http://mi.mathnet.ru/ivm9351}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 4
\pages 74--85
\crossref{https://doi.org/10.3103/S1066369X18040084}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000429242100008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045112732}
Linking options:
http://mi.mathnet.ru/eng/ivm9351 http://mi.mathnet.ru/eng/ivm/y2018/i4/p86
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 57 | Full text: | 8 | References: | 11 | First page: | 12 |
|