RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Vyssh. Uchebn. Zaved. Mat., 2018, Number 7, Pages 16–35 (Mi ivm9373)  

This article is cited in 1 scientific paper (total in 1 paper)

$C^*$-algebras generated by mappings. Classification of invariant subspaces

S. A. Grigoryana, A. Yu. Kuznetsovab

a Kazan State Power Engineering University, 51 Krasnosel'skaya str., Kazan, 420066 Russia
b Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We continue the study of the operator algebra associated with a self-mapping $\varphi $ on a countable set $ X $ which can be represented as a directed graph. The algebra is in a class of operator algebras, generated by a family of partial isometries satisfying some relations on their source and range projectors. Earlier we formulated the irreducibility criterion of such algebras. With its help we will examine the structure of the the corresponding Hilbert space. We will show that for a reducible algebra the underlying Hilbert space is represented either as an infinite sum of invariant subspaces or in the form of a tensor product of finite-dimensional Hilbert space and $ l ^ 2 (\mathbb{Z})$. In the first case we give the conditions when the studied algebra has an irreducible representation into a $ C^*$-algebra generated by a weighted shift operator. In the second case, the algebra has the irreducible finite-dimensional representations indexed by the unit circle.

Keywords: $C^*$-algebra, partial isometry, positive operator, projection, invariant subspace, weighted shift operator, matrix algebra.

Full text: PDF file (324 kB)
References: PDF file   HTML file

English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:7, 13–30

Bibliographic databases:

UDC: 517.98
Received: 13.04.2017

Citation: S. A. Grigoryan, A. Yu. Kuznetsova, “$C^*$-algebras generated by mappings. Classification of invariant subspaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 7, 16–35; Russian Math. (Iz. VUZ), 62:7 (2018), 13–30

Citation in format AMSBIB
\Bibitem{GriKuz18}
\by S.~A.~Grigoryan, A.~Yu.~Kuznetsova
\paper $C^*$-algebras generated by mappings. Classification of invariant subspaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 7
\pages 16--35
\mathnet{http://mi.mathnet.ru/ivm9373}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 7
\pages 13--30
\crossref{https://doi.org/10.3103/S1066369X18070022}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000436830400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049148506}


Linking options:
  • http://mi.mathnet.ru/eng/ivm9373
  • http://mi.mathnet.ru/eng/ivm/y2018/i7/p16

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kuznetsova A.Yu., “Algebra Associated With a Map Inducing An Inverse Semigroup”, Lobachevskii J. Math., 40:8, SI (2019), 1102–1112  crossref  isi
  • Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Number of views:
    This page:98
    Full text:15
    References:9
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020