|
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, Number 7, Pages 91–95
(Mi ivm9486)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Brief communications
Two-sided estimate of univalence domains of holomorphic mappings of the disc into itself with an invariant diameter
O. S. Kudryavtsevaa, A. P. Solodovb a Volgograd State Technical University, 28 Lenin Ave., Volgograd, 400005 Russia
b Lomonosov Moscow State University, 1 Leninskie Gory str., Moscow, 119991 Russia
Abstract:
We obtain an asymptotically sharp two-sided estimate of univalence domains on classes of holomorphic mappings of the unit disc into itself with two boundary fixed points and an invariant diameter. The estimate depends on the value of the product of the angular derivatives at the boundary fixed points.
Keywords:
holomorphic mapping, fixed point, angular derivative, domain of univalence.
DOI:
https://doi.org/10.26907/0021-3446-2019-7-91-95
Full text:
PDF file (312 kB)
References:
PDF file
HTML file
UDC:
517.54 Received: 20.02.2019 Revised: 20.02.2019 Accepted: 27.03.2019
Citation:
O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimate of univalence domains of holomorphic mappings of the disc into itself with an invariant diameter”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 7, 91–95
Citation in format AMSBIB
\Bibitem{KudSol19}
\by O.~S.~Kudryavtseva, A.~P.~Solodov
\paper Two-sided estimate of univalence domains of holomorphic mappings of the disc into itself with an invariant diameter
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 7
\pages 91--95
\mathnet{http://mi.mathnet.ru/ivm9486}
\crossref{https://doi.org/10.26907/0021-3446-2019-7-91-95}
Linking options:
http://mi.mathnet.ru/eng/ivm9486 http://mi.mathnet.ru/eng/ivm/y2019/i7/p91
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
O. S. Kudryavtseva, A. P. Solodov, “Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter”, Sb. Math., 211:11 (2020), 1592–1611
|
Number of views: |
This page: | 141 | Full text: | 11 | References: | 6 | First page: | 4 |
|