RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Comp. Eng. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


J. Comp. Eng. Math., 2018, Volume 5, Issue 1, Pages 51–56 (Mi jcem113)  

Short Notes

Spectral problem for a mathematical model of hydrodynamics

E. V. Kirillov, G. A. Zakirova

South Ural State University, Chelyabinsk, Russian Federation

Abstract: Spectral problems of the form $(T+P)u=\lambda u$ have a huge range of applications: hydrodynamic stability problems, elastic vibrations of a membrane, a set of possible states of systems in quantum mechanics, and so forth. The self-adjoint operators perturbed by bounded operators are most thoroughly studied. In applications, the perturbed operator is usually represented by the Sturm–Liouville or Schrodinger operator. At present moment, the researchers are very interested in the equations not solved with respect to the highest derivative $L\dot u=Tu+f$, which are known as Sobolev type equations. The study of Sobolev type equations leads to spectral problems of the form $T u = \lambda Lu$. In many cases, the operator $T$ can be perturbed by an operator $P$, and then the spectral problem takes the form $(T + P)u = \lambda Lu$. The study of such problems allows to construct a solution of the equation, as well as to investigate various parameters of mathematical models. Previously, such spectral problems with the perturbed operator were not studied. In this paper, we propose the method for investigating and solving the direct spectral problem for a hydrodynamic model.

Keywords: potential; discrete self-adjoint operator; spectral problem; relative spectrum.

DOI: https://doi.org/10.14529/jcem180106

Full text: PDF file (160 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.9
MSC: 35A01, 35E15, 35Q19
Received: 15.02.2018
Language:

Citation: E. V. Kirillov, G. A. Zakirova, “Spectral problem for a mathematical model of hydrodynamics”, J. Comp. Eng. Math., 5:1 (2018), 51–56

Citation in format AMSBIB
\Bibitem{KirZak18}
\by E.~V.~Kirillov, G.~A.~Zakirova
\paper Spectral problem for a mathematical model of hydrodynamics
\jour J. Comp. Eng. Math.
\yr 2018
\vol 5
\issue 1
\pages 51--56
\mathnet{http://mi.mathnet.ru/jcem113}
\crossref{https://doi.org/10.14529/jcem180106}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3789436}
\elib{http://elibrary.ru/item.asp?id=32737019}


Linking options:
  • http://mi.mathnet.ru/eng/jcem113
  • http://mi.mathnet.ru/eng/jcem/v5/i1/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Journal of Computational and Engineering Mathematics
    Number of views:
    This page:48
    Full text:21
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019