RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zh. Èksper. Teoret. Fiz., 2005, Volume 82, Issue 4, Pages 217–222 (Mi jetpl1537)  

This article is cited in 56 scientific papers (total in 56 papers)

CONDENSED MATTER

“Destruction” of the Fermi surface due to pseudogap fluctuations in strongly correlated systems

È. Z. Kuchinskii, I. A. Nekrasov, M. V. Sadovskii

Institute of Electrophysics, RAS Urals Branch

Abstract: We generalize the dynamical-mean field theory (DMFT) by including into the DMFT equations dependence on correlation length of pseudogap fluctuations via additional (momentum dependent) self–energy $\Sigma_\mathbf k$. This self – energy describes non-local dynamical correlations induced by short-ranged collective SDW-like antiferromagnetic spin (or CDW-like charge) fluctuations. At high enough temperatures these fluctuations can be viewed as a quenched Gaussian random field with finite correlation length. This generalized DMFT+$\Sigma_\mathbf k$ approach is used for the numerical solution of the weakly doped one-band Hubbard model with repulsive Coulomb interaction on a square lattice with nearest and next nearest neighbour hopping. The effective single impurity problem is solved by numerical renormalization group (NRG). Both types of strongly correlated metals, namely (i) doped Mott insulator and (ii) the case of bandwidth $W\lesssim U$ ($U$ – value of local Coulomb interaction) are considered. Calculating profiles of spectral densities for different parameters of the model we demonstrate the qualitative picture of Fermi surface “destruction” and formation of “Fermi arcs” due to pseudogap fluctuations in qualitative agreement with ARPES experiments. “Blurring” of the Fermi surface is enhanced with the growth of the Coulomb interaction.

Full text: PDF file (184 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2005, 82:4, 198–203

Bibliographic databases:

Document Type: Article
PACS: 71.10.Fd, 71.10.Hf, 71.27.+a, 71.30.+h, 74.72.-h
Received: 09.06.2005
Language: English

Citation: È. Z. Kuchinskii, I. A. Nekrasov, M. V. Sadovskii, ““Destruction” of the Fermi surface due to pseudogap fluctuations in strongly correlated systems”, Pis'ma v Zh. Èksper. Teoret. Fiz., 82:4 (2005), 217–222; JETP Letters, 82:4 (2005), 198–203

Citation in format AMSBIB
\Bibitem{KucNekSad05}
\by \`E.~Z.~Kuchinskii, I.~A.~Nekrasov, M.~V.~Sadovskii
\paper ``Destruction'' of the Fermi surface due to pseudogap fluctuations in strongly correlated systems
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2005
\vol 82
\issue 4
\pages 217--222
\mathnet{http://mi.mathnet.ru/jetpl1537}
\transl
\jour JETP Letters
\yr 2005
\vol 82
\issue 4
\pages 198--203
\crossref{https://doi.org/10.1134/1.2121814}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000232724000008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27344446826}


Linking options:
  • http://mi.mathnet.ru/eng/jetpl1537
  • http://mi.mathnet.ru/eng/jetpl/v82/i4/p217

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Sadovskii M.V., Nekrasov I.A., Kuchinskii E.Z., Pruschke T., Anisimov V.I., “Pseudogaps in strongly correlated metals: A generalized dynamical mean-field theory approach”, Physical Review B, 72:15 (2005), 155105  crossref  adsnasa  isi  elib  scopus
    2. Granath M., “Nodal-antinodal dichotomy and magic doping fractions in a stripe-ordered antiferromagnet”, Physical Review B, 74:24 (2006), 245112  crossref  adsnasa  isi  elib  scopus
    3. Kuchinskii E.Z., Sadovskii M.V., “Non-Fermi-liquid behavior in the fluctuating gap model: From the pole to a zero of the Green's function”, Zh Èksper Teoret Fiz, 103:3 (2006), 415–427  crossref  adsnasa  isi  scopus
    4. Kuchinskii E.Z., Nekrasov I.A., Sadovskii M.V., “Pseudogaps: introducing the length scale into dynamical mean-field theory”, Low Temperature Physics, 32:4–5 (2006), 398–405  crossref  adsnasa  isi  elib  scopus
    5. Kusunose H., “Influence of spatial correlations in strongly correlated electron systems: Extension to dynamical mean field approximation”, J Phys Soc Japan, 75:5 (2006), 054713  crossref  adsnasa  isi  elib  scopus
    6. Nekrasov I.A., Held K., Keller G., Kondakov D.E., Pruschke T., Kollar M., Andersen O.K., Anisimov V.I., Vollhardt D., “Momentum-resolved spectral functions of SrVO3 calculated by LDA plus DMFT”, Physical Review B, 73:15 (2006), 155112  crossref  mathscinet  adsnasa  isi  elib  scopus
    7. Held K., “Electronic structure calculations using dynamical mean field theory”, Advances in Physics, 56:6 (2007), 829–926  crossref  adsnasa  isi  scopus
    8. Nekrasov I.A., Kuchinskii E.Z., Pchelkina Z.V., Sadovskii M.V., “Pseudogap in normal underdoped phase of Bi2212: LDA+DMFT+Sigma(k)”, Phys C, 460:2 (2007), 997–999  crossref  mathscinet  adsnasa  isi  scopus
    9. Sadovskii M.N., Kuchinskii E.Z., Nekrasov I.A., “Destruction of the Fermi surface due to pseudogap fluctuations in correlated systems”, Phys C, 460:2 (2007), 1084–1085  crossref  adsnasa  isi  scopus
    10. Kuchinskii E.Z., Nekrasov I.A., Pchelkina Z.V., Sadovskii M.V., “Pseudogap behavior in Bi2Ca2SrCu2O8: Results of the generalized dynamical mean-field approach”, Zh Èksper Teoret Fiz, 104:5 (2007), 792–804  crossref  adsnasa  isi  scopus
    11. Avella A., Mancini F., “Underdoped cuprate phenomenology in the two-dimensional Hubbard model within the composite operator method”, Physical Review B, 75:13 (2007), 134518  crossref  adsnasa  isi  elib  scopus
    12. Kuchinskii E.Z., Nekrasov I.A., Sadovskii M.V., “Pseudogaps in strongly correlated metals: Optical conductivity within the generalized dynamical mean-field theory approach”, Physical Review B, 75:11 (2007), 115102  crossref  adsnasa  isi  elib  scopus
    13. Plakida N.M., Oudovenko V.S., “Electron spectrum in high-temperature cuprate superconductors”, Zh Èksper Teoret Fiz, 104:2 (2007), 230–244  crossref  adsnasa  isi  scopus
    14. Pchelkina Z.V., Nekrasov I.A., Pruschke T., Sekiyama A., Suga S., Anisimov V.I., Vollhardt D., “Evidence for strong electronic correlations in the spectra of Sr2RuO4”, Physical Review B, 75:3 (2007), 035122  crossref  adsnasa  isi  elib  scopus
    15. Toschi A., Katanin A.A., Held K., “Dynamical vertex approximation: A step beyond dynamical mean-field theory”, Physical Review B, 75:4 (2007), 045118  crossref  mathscinet  adsnasa  isi  elib  scopus
    16. JETP Letters, 88:3 (2008), 192–196  mathnet  crossref  isi
    17. Yu. A. Izyumov, È. Z. Kurmaev, “Materials with strong electron correlations”, Phys. Usp., 51:1 (2008), 23–56  mathnet  crossref  crossref  adsnasa  isi
    18. Held K., Katanin A.A., Toschi A., “Dynamical Vertex Approximation - An Introduction”, Progr Theoret Phys Suppl, 2008, no. 176, 117–133  crossref  mathscinet  adsnasa  isi  elib  scopus
    19. Nekrasov I.A., Kokorina E.E., Kuchinskii E.Z., Pchelkina Z.V., Sadovskii M.V., “Comparative study of electron- and hole-doped high-T-c compounds in pseudogap regime: LDA plus DMFT+Sigma(k) approach”, Journal of Physics and Chemistry of Solids, 69:12 (2008), 3269–3273  crossref  adsnasa  isi  scopus
    20. Kokorina E.E., Kuchinskii E.Z., Nekrasov I.A., Pchelkina Z.V., Sadovskii M.V., Sekiyama A., Suga S., Tsunekawa M., “Origin of “Hot Spots” in the pseudogap regime of Nd1.85Ce0.15CuO4: An LDA + DMFT + Sigma(k) study”, Zh Èksper Teoret Fiz, 107:5 (2008), 828–838  crossref  adsnasa  isi  scopus
    21. Kuchinskii E.Z., Kuleeva N.A., Nekrasov I.A., Sadovskii M.V., “The optical sum rule in strongly correlated systems”, Zh Èksper Teoret Fiz, 107:2 (2008), 281–287  crossref  adsnasa  isi  scopus
    22. Bulla R., Costi T.A., Pruschke T., “Numerical renormalization group method for quantum impurity systems”, Rev Modern Phys, 80:2 (2008), 395–450  crossref  adsnasa  isi  elib  scopus
    23. Kuchinskii E.Z., Nekrasov I.A., Sadovskii M.V., “Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach”, Zh Èksper Teoret Fiz, 106:3 (2008), 581–596  crossref  adsnasa  isi  scopus
    24. Ovchinnikov S.G., Korshunov M.M., Shneyder E.I., “Lifshits Quantum Phase Transitions and Rearrangement of the Fermi Surface upon a Change in the Hole Concentration in High-Temperature Superconductors”, Zh Èksper Teoret Fiz, 109:5 (2009), 775–785  crossref  mathscinet  adsnasa  isi  scopus
    25. Nekrasov I.A., Pavlov N.S., Kuchinskii E.Z., Sadovskii M.V., Pchelkina Z.V., Zabolotnyy V.B., Geck J., Buechner B., Borisenko S.V., Inosov D.S., Kordyuk A.A., Lambacher M., Erb A., “Electronic structure of Pr(2-x)CexCuO(4) studied via ARPES and LDA plus DMFT+Sigma(k)”, Physical Review B, 80:14 (2009), 140510  crossref  adsnasa  isi  elib  scopus
    26. Kuchinskii E.Z., Nekrasov I.A., Sadovskii M.V., “Interplay of electron-phonon interaction and strong correlations: DMFT plus Sigma study”, Physical Review B, 80:11 (2009), 115124  crossref  adsnasa  isi  elib  scopus
    27. Katanin A.A., Toschi A., Held K., “Comparing pertinent effects of antiferromagnetic fluctuations in the two- and three-dimensional Hubbard model”, Physical Review B, 80:7 (2009), 075104  crossref  adsnasa  isi  elib  scopus
    28. Ovchinnikov S.G., Korshunov M.M., Kozeeva L.P., Lavrov A.N., “Peculiarity of interrelation between electronic and magnetic properties of HTSC cuprates associated with short-range antiferromagnetic order”, Zh Èksper Teoret Fiz, 111:1 (2010), 104–113  crossref  mathscinet  adsnasa  isi  scopus
    29. Nekrasov I.A., Kokorina E.E., Kuchinskii E.Z., Sadovskii M.V., Kasai S., Sekiyama A., Suga S., “ARPES Spectral Functions and Fermi Surface for La1.86Sr0.14CuO4 Compared with LDA plus DMFT + Sigma(k) Calculations”, Zh Èksper Teoret Fiz, 110:6 (2010), 989–994  crossref  adsnasa  isi  scopus
    30. Kuchinskii E.Z., Kuleeva N.A., Nekrasov I.A., Sadovskii M.V., “Two-dimensional Anderson-Hubbard model in the DMFT plus Sigma approximation”, Zh Èksper Teoret Fiz, 110:2 (2010), 325–335  crossref  adsnasa  isi  scopus
    31. Ovchinnikov S.G., Makarov I.A., Shneyder E.I., “Effect of interlayer tunneling on the electronic structure of bilayer cuprates and quantum phase transitions in carrier concentration and high magnetic field”, Zh Èksper Teoret Fiz, 112:2 (2011), 288–302  crossref  mathscinet  isi  scopus
    32. Sadovskii M.V., Kuchinskii E.Z., Nekrasov I.A., “Interplay of electron-phonon interaction and strong correlations: DMFT plus Sigma approach”, Journal of Physics and Chemistry of Solids, 72:5 (2011), 366–370  crossref  adsnasa  isi  scopus
    33. Rohringer G., Toschi A., Katanin A., Held K., “Critical Properties of the Half-Filled Hubbard Model in Three Dimensions”, Physical Review Letters, 107:25 (2011), 256402  crossref  adsnasa  isi  elib  scopus
    34. Ovchinnikov S.G., Korshunov M.M., Shneyder E.I., “Effect of Short Antiferromagnetic Correlations on the Normal and Superconducting Properties in Copper Oxides”, Trends in Magnetism, Solid State Phenomena, 2011, 561–566  isi  elib
    35. E Z. Kuchinskii, I. A. Nekrasov, M. V. Sadovskii, “Generalized dynamical mean-field theory in the physics of strongly correlated systems”, Phys. Usp., 55:4 (2012), 325–355  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    36. E. I. Shneider, S. G. Ovchinnikov, M. M. Korshunov, S. V. Nikolaev, “Electronic structure and properties of high-$T_C$ superconducting cuprates in the normal and superconducting phases within the LDA + GTB approach”, JETP Letters, 96:5 (2012), 349–360  mathnet  crossref  isi  elib  elib
    37. Makarov I.A. Ovchinnikov S.G. Shneider E.I., “Dependence of the Critical Temperature of High-Temperature Cuprate Superconductors on Hoppings and Spin Correlations Between Cuo2 Planes”, J. Exp. Theor. Phys., 114:2 (2012), 329–342  crossref  adsnasa  isi  elib  scopus
    38. Nikolaev S.V., Ovchinnikov S.G., “Effect of Hole Doping on the Electronic Structure and the Fermi Surface in the Hubbard Model Within Norm-Conserving Cluster Pertubation Theory”, J. Exp. Theor. Phys., 114:1 (2012), 118–131  crossref  adsnasa  isi  elib  scopus
    39. Kuleeva N.A., Kuchinskii E.Z., “Disorder and Pseudogap in Strongly Correlated Systems: Phase Diagram in the Dmft Plus I Pound Approach”, J. Exp. Theor. Phys., 116:6 (2013), 1027–1035  crossref  adsnasa  isi  elib  scopus
    40. Ayral T., Biermann S., Werner Ph., “Screening and Nonlocal Correlations in the Extended Hubbard Model From Self-Consistent Combined Gw and Dynamical Mean Field Theory”, Phys. Rev. B, 87:12 (2013), 125149  crossref  adsnasa  isi  elib  scopus
    41. JETP Letters, 100:3 (2014), 192–196  mathnet  crossref  crossref  isi  elib  elib
    42. Kuleeva N.A., Kuchinskii E.Z., Sadovskii M.V., “Normal Phase and Superconducting Instability in the Attractive Hubbard Model: a Dmft(Nrg) Study”, J. Exp. Theor. Phys., 119:2 (2014), 264–271  crossref  isi  elib  scopus
    43. Avella A., “the Hubbard Model Beyond the Two-Pole Approximation: a Composite Operator Method Study”, Eur. Phys. J. B, 87:2 (2014), 45  crossref  isi  scopus
    44. Avella A., “Composite Operator Method Analysis of the Underdoped Cuprates Puzzle”, Adv. Condens. Matter Phys., 2014, 515698  crossref  isi  elib  scopus
    45. Avella A., “Com(3P) Solution of the 2D Hubbard Model: Momentum-Resolved Quantities”, J. Supercond. Nov. Magn, 28:3, SI (2015), 741–750  crossref  isi  elib  scopus
    46. Kuchinskii E.Z. Kuleeva N.A. Sadovskii M.V., “Attractive Hubbard Model With Disorder and the Generalized Anderson Theorem”, J. Exp. Theor. Phys., 120:6 (2015), 1055–1063  crossref  isi  elib  scopus
    47. Plakida N.M., “Spin fluctuations and high-temperature superconductivity in cuprates”, Physica C, 531 (2016), 39–59  crossref  isi  elib  scopus
    48. Kubota D. Sakai Sh. Imada M., “Real-space renormalized dynamical mean field theory”, Phys. Rev. B, 93:20 (2016), 205119  crossref  isi  elib  scopus
    49. Kuchinskii E.Z. Kuleeva N.A. Sadovskii M.V., “Attractive Hubbard Within the Generalized DMFT: Normal State Properties, Disorder Effects and Superconductivity”, J. Supercond. Nov. Magn, 29:4 (2016), 1097–1103  crossref  isi  scopus
    50. Kuchinskii E.Z. Sadovskii M.V., “DMFT+ approach to disordered hubbard model”, J. Exp. Theor. Phys., 122:3 (2016), 509–524  crossref  isi  elib  scopus
    51. Kuchinskii E.Z. Kuleeva N.A. Sadovskii M.V., “Attractive Hubbard model: Homogeneous Ginzburg–Landau expansion and disorder”, J. Exp. Theor. Phys., 122:2 (2016), 375–383  crossref  isi  elib  scopus
    52. Kuchinskii E.Z. Kuleeva N.A. Sadovskii M.V., “Ginzburg–Landau expansion in BCS–BEC crossover region of disordered attractive Hubbard model”, Low Temp. Phys., 43:1 (2017), 17–26  crossref  isi  scopus
    53. Kuchinskii E.Z. Kuleeva N.A. Sadovskii M.V., “Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model With Attraction”, J. Exp. Theor. Phys., 125:6 (2017), 1127–1136  crossref  isi  scopus
    54. Kuchinskii E.Z. Kuleeva N.A. Sadovskii M.V., “Ginzburg-Landau Expansion in Strongly Disordered Attractive Anderson-Hubbard Model”, J. Exp. Theor. Phys., 125:1 (2017), 111–122  crossref  isi  scopus
    55. Di Ciolo A., Avella A., “The Composite Operator Method Route to the 2D Hubbard Model and the Cuprates”, Condens. Matter Phys., 21:3 (2018), 33701  crossref  isi
    56. Kuchinskii E.Z. Kuleeva N.A. Sadovskii M.V., “Temperature Dependence of Paramagnetic Critical Magnetic Field in Disordered Attractive Hubbard Model”, J. Exp. Theor. Phys., 127:4 (2018), 753–760  crossref  isi  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:149
    Full text:28
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019