RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zh. Èksper. Teoret. Fiz., 2012, Volume 95, Issue 4, Pages 216–218 (Mi jetpl2444)  

This article is cited in 12 scientific papers (total in 12 papers)

CONDENSED MATTER

Mechanism of the antihysteresis behavior of the resistivity of graphene on a Pb(Zr$_x$Ti$_{1-x}$)O$_3$ ferroelectric substrate

M. V. Strikha

Institute of Semiconductor Physics NAS, Kiev

Abstract: A numerical model has been proposed to explain the antihysteresis behavior of the resistivity of graphene on a Pb(Zr$_x$Ti$_{1-x}$ )O$_3$ ferroelectric substrate with a change in the gate voltage. The model takes into account the screening of the electric field in the substrate by electrons trapped in states connected with the graphene-ferroelectric interface and describes the previously obtained experimental dependences. The estimates can be important for creating elements of new-generation energy-independent memory using two stable resistivity values that appear in the antihysteresis effect; logical $0$ and $1$ are assigned to these two values.

Full text: PDF file (262 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2012, 95:4, 198–200

Bibliographic databases:

Document Type: Article
Received: 11.01.2012

Citation: M. V. Strikha, “Mechanism of the antihysteresis behavior of the resistivity of graphene on a Pb(Zr$_x$Ti$_{1-x}$)O$_3$ ferroelectric substrate”, Pis'ma v Zh. Èksper. Teoret. Fiz., 95:4 (2012), 216–218; JETP Letters, 95:4 (2012), 198–200

Citation in format AMSBIB
\Bibitem{Str12}
\by M.~V.~Strikha
\paper Mechanism of the antihysteresis behavior of the resistivity of graphene on a Pb(Zr$_x$Ti$_{1-x}$)O$_3$ ferroelectric substrate
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2012
\vol 95
\issue 4
\pages 216--218
\mathnet{http://mi.mathnet.ru/jetpl2444}
\elib{http://elibrary.ru/item.asp?id=17708886}
\transl
\jour JETP Letters
\yr 2012
\vol 95
\issue 4
\pages 198--200
\crossref{https://doi.org/10.1134/S002136401204008X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303383100006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860127108}


Linking options:
  • http://mi.mathnet.ru/eng/jetpl2444
  • http://mi.mathnet.ru/eng/jetpl/v95/i4/p216

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Zhang Ch.X., Zhang E.X., Fleetwood D.M., Alles M.L., Schrimpf R.D., Song E.B., Kim S.M., Galatsis K., Wang K.L.W., “Electrical Stress and Total Ionizing Dose Effects on Graphene-Based Non-Volatile Memory Devices”, IEEE Trans. Nucl. Sci., 59:6, Part 1 (2012), 2974–2978  crossref  adsnasa  isi  elib  scopus
    2. Strikha M.V., “Non-Volatile Memory and Ir Radiation Modulators Based Upon Graphene-on-Ferroelectric Substrate. a Review”, Ukr. J. Phys. Opt., 13:3 (2012), S5–S26  crossref  isi
    3. Strikha V M., “Bistable Optical System Based on Hysteresis in the Reflectivity of Graphene-on-Pb(Zrxti1-X)O-3”, Ukr. J. Phys. Opt., 13:1 (2012), 45–50  crossref  isi
    4. Kurchak A.I., Strikha M.V., “Antihysteresis of the Electrical Resistivity of Graphene on a Ferroelectric Pb(Zrxti1-X)O-3 Substrate”, J. Exp. Theor. Phys., 116:1 (2013), 112–117  crossref  adsnasa  isi  elib  scopus
    5. Morozovska A.N., Strikha M.V., “Pyroelectric Origin of the Carrier Density Modulation at Graphene-Ferroelectric Interface”, J. Appl. Phys., 114:1 (2013), 014101  crossref  adsnasa  isi  elib  scopus
    6. Zhang Ch.X., Zhang E.X., Fleetwood D.M., Alles M.L., Schrimpf R.D., Song E.B., Galatsis K., Newaz A.K.M., Bolotin K.I., “Total Ionizing Dose Effects and Reliability of Graphene-Based Non-Volatile Memory Devices”, IEEE Aerospace Conference Proceedings, IEEE, 2013  isi
    7. Yusuf M.H., Nielsen B., Dawber M., Du X., “Extrinsic and Intrinsic Charge Trapping At the Graphene/Ferroelectric Interface”, Nano Lett., 14:9 (2014), 5437–5444  crossref  isi  elib  scopus
    8. Park N., Kang H., Park J., Lee Y., Yun Y., Lee J.-H., Lee S.-G., Lee Y.H., Suh D., “Ferroelectric Single-Crystal Gated Graphene/Hexagonal-Bn/Ferroelectric Field-Effect Transistor”, ACS Nano, 9:11 (2015), 10729–10736  crossref  isi  elib  scopus
    9. A. I. Kurchak, A. N. Morozovska, M. V. Strikha, “Hysteretic Phenomena in Gfet: Comprehensive Theory and Experiment”, J. Appl. Phys., 122:4 (2017), 044504  crossref  isi  scopus
    10. Zh. Lu, C. Serrao, A. I. Khan, L. You, J. C. Wong, Yu. Ye, H. Zhu, X. Zhang, S. Salahuddinl, “Nonvolatile MoS2 Field Effect Transistors Directly Gated By Single Crystalline Epitaxial Ferroelectric”, Appl. Phys. Lett., 111:2 (2017), 023104  crossref  isi  scopus
    11. Lu Zh., Serrao C., Khan A.I., Clarkson J.D., Wong J.C., Ramesh R., Salahuddin S., “Electrically Induced, Non-Volatile, Metal Insulator Transition in a Ferroelectric-Controlled Mos2 Transistor”, Appl. Phys. Lett., 112:4 (2018), 043107  crossref  isi  scopus
    12. Strikha M.V., Kurchak A.I., Morozovska A.N., “Influence of Domain Structure in Ferroelectric Substrate on Graphene Conductance (Authors' Review)”, Ukr. J. Phys., 63:1 (2018), 49–69  crossref  isi  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:180
    Full text:46
    References:36
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019