RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zh. Èksper. Teoret. Fiz., 2003, Volume 77, Issue 6, Pages 319–325 (Mi jetpl2759)  

This article is cited in 3 scientific papers (total in 3 papers)

PLASMA, GASES

Beyond the Kuramoto-Zel'dovich theory: Steadily rotating concave spiral waves and their relation to the echo phenomenon

O. A. Morneva, I. M. Tsyganovb, O. V. Aslanidicd, M. A. Tsyganova

a Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushino, Moscow region
b M. V. Lomonosov Moscow State University
c School of Biomedical Sciences, University of Leeds
d Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moskovskaya obl.

Abstract: In numerical experiments with the Fitzhugh-Nagumo set of reaction-diffusion equations describing two-dimensional excitable media, unusual solutions are found that correspond to a concave spiral wave steadily rotating round a circular obstacle in a finite-size medium. Such a wave arises in the region of parameters corresponding to the solitonlike regime (see text); it appears due to the interaction between the peripheral areas of a «seed» spiral wave with a convex front and the echo waves incoming from the outer boundaries of a medium. The solutions obtained are in contradiction with intuition and represent a numerical counterexample to the known theories that forbid steadily moving excitation waves with concave fronts. Nevertheless, a concave spiral wave is a stable object; being transformed to the usual spiral wave with a convex front by suppressing echo at the outer boundaries of the medium, it is again recovered upon restoring the echo conditions. In addition to the single-arm spiral concave wave, solutions are obtained that describe multiarm waves of this type; for this reason, the concave fronts of these waves are a coarse property.

Full text: PDF file (245 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2003, 77:6, 270–275

PACS: 03.40.Kf, 52.35.Sb, 87.22.Jb,
Received: 27.11.2002
Revised: 12.02.2003

Citation: O. A. Mornev, I. M. Tsyganov, O. V. Aslanidi, M. A. Tsyganov, “Beyond the Kuramoto-Zel'dovich theory: Steadily rotating concave spiral waves and their relation to the echo phenomenon”, Pis'ma v Zh. Èksper. Teoret. Fiz., 77:6 (2003), 319–325; JETP Letters, 77:6 (2003), 270–275

Citation in format AMSBIB
\Bibitem{MorTsyAsl03}
\by O.~A.~Mornev, I.~M.~Tsyganov, O.~V.~Aslanidi, M.~A.~Tsyganov
\paper Beyond the Kuramoto-Zel'dovich theory: Steadily rotating concave spiral waves and their relation to the echo phenomenon
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2003
\vol 77
\issue 6
\pages 319--325
\mathnet{http://mi.mathnet.ru/jetpl2759}
\transl
\jour JETP Letters
\yr 2003
\vol 77
\issue 6
\pages 270--275
\crossref{https://doi.org/10.1134/1.1577755}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-12444275353}


Linking options:
  • http://mi.mathnet.ru/eng/jetpl2759
  • http://mi.mathnet.ru/eng/jetpl/v77/i6/p319

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. K. Vanag, Phys. Usp., 47:9 (2004), 923–941  mathnet  crossref  crossref  adsnasa  isi
    2. M. A. Tsyganov, V. N. Biktashev, J. Brindley, A. V. Holden, G. R. Ivanitskii, Phys. Usp., 50:3 (2007), 263–286  mathnet  crossref  crossref  adsnasa  isi
    3. Marcotte Ch.D., Grigoriev R.O., Chaos, 26:9 (2016), 093107  crossref  mathscinet  zmath  isi  elib  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:114
    Full text:34
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019