RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zh. Èksper. Teoret. Fiz., 2002, Volume 76, Issue 7, Pages 488–492 (Mi jetpl2938)  

This article is cited in 6 scientific papers (total in 6 papers)

FIELDS, PARTICLES, AND NUCLEI

Nontrivial class of composite $U(\sigma+\mu)$ vector solitons

A. M. Agalarova, R. M. Magomedmirzaevb

a M. V. Lomonosov Moscow State University
b Institute of Physics, Daghestan Scientific Centre, Russian Academy of Sciences

Abstract: A mixed problem for the compact $U(m)$ vector nonlinear Schrödinger model with an arbitrary sign of coupling constant is exactly solved. It is shown that a new class of solutions—composite $U(\sigma+\mu)$ vector solitons with inelastic interaction (changing shape without energy loss) at $\sigma>1$ and strictly elastic interaction at $\sigma=1$— exists for $m\geq3$. These solitons are color structures consisting of $\sigma$ bright and $\mu$ dark solitons ($\sigma+\mu=m$) and capable of existing in both self-focusing and defocusing media. The $N$-soliton formula universal for attraction and repulsion is derived by the Hirota method.

Full text: PDF file (216 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2002, 76:7, 414–418

Document Type: Article
PACS: 03.50.-z, 42.65.-k
Received: 05.07.2002
Revised: 12.09.2002

Citation: A. M. Agalarov, R. M. Magomedmirzaev, “Nontrivial class of composite $U(\sigma+\mu)$ vector solitons”, Pis'ma v Zh. Èksper. Teoret. Fiz., 76:7 (2002), 488–492; JETP Letters, 76:7 (2002), 414–418

Citation in format AMSBIB
\Bibitem{AgaMag02}
\by A.~M.~Agalarov, R.~M.~Magomedmirzaev
\paper Nontrivial class of composite $U(\sigma+\mu)$ vector solitons
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2002
\vol 76
\issue 7
\pages 488--492
\mathnet{http://mi.mathnet.ru/jetpl2938}
\transl
\jour JETP Letters
\yr 2002
\vol 76
\issue 7
\pages 414--418
\crossref{https://doi.org/10.1134/1.1528692}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0040076026}


Linking options:
  • http://mi.mathnet.ru/eng/jetpl2938
  • http://mi.mathnet.ru/eng/jetpl/v76/i7/p488

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Agalarov A., Zhulego V., Gadzhimuradov T., “Bright, Dark, and Mixed Vector Soliton Solutions of the General Coupled Nonlinear Schrodinger Equations”, Phys. Rev. E, 91:4 (2015), 042909  crossref  mathscinet  isi  elib  scopus
    2. Gadzhimuradov T.A., Agalarov A.M., “Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation”, Phys. Rev. A, 93:6 (2016), 062124  crossref  isi  elib  scopus
    3. Li M., Liang H., Xu T., Liu Ch., “Vector rogue waves in the mixed coupled nonlinear Schrödinger equations”, Eur. Phys. J. Plus, 131:4 (2016), 100  crossref  isi  elib  scopus
    4. Nath D., Gao Ya., Mareeswaran R.B., Kanna T., Roy B., “Bright-Dark and Dark-Dark Solitons in Coupled Nonlinear Schrodinger Equation With Pt-Symmetric Potentials”, Chaos, 27:12 (2017), 123102  crossref  mathscinet  zmath  isi  scopus
    5. Gadzhimuradov T.A., Abdullaev G.O., Agalarov A.M., “Vector Dark Solitons With Oscillating Background Density”, Nonlinear Dyn., 89:4 (2017), 2695–2702  crossref  mathscinet  isi  scopus
    6. A. M. Agalarov, T. A. Gadzhimuradov, A. A. Potapov, A. E. Rassadin, “Edge states and chiral solitons in topological hall and Chern–Simons fields”, Model. i analiz inform. sistem, 25:1 (2018), 133–139  mathnet  crossref  elib
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:132
    Full text:25
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019