General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Pis'ma v Zh. Èksper. Teoret. Fiz.:

Personal entry:
Save password
Forgotten password?

Pis'ma v Zh. Èksper. Teoret. Fiz., 2013, Volume 97, Issue 1, Pages 49–55 (Mi jetpl3327)  

This article is cited in 43 scientific papers (total in 43 papers)


Spectral duality in integrable systems from AGT conjecture

A. Mironovab, A. Morozovb, Y. Zenkevichcbd, A. Zotovb

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
c M. V. Lomonosov Moscow State University, Faculty of Physics
d Institute for Nuclear Research, Russian Academy of Sciences, Moscow

Abstract: We describe relationships between integrable systems with $N$ degrees of freedom arising from the AGT conjecture. Namely, we prove the equivalence (spectral duality) between the $N$-cite Heisenberg spin chain and a reduced gl$_N$ Gaudin model both at classical and quantum level. The former one appears on the gauge theory side of the AGT relation in the Nekrasov–Shatashvili (and further the Seiberg–Witten) limit while the latter one is natural on the CFT side. At the classical level, the duality transformation relates the Seiberg–Witten differentials and spectral curves via a bispectral involution. The quantum duality extends this to the equivalence of the corresponding Baxter–Schrödinger equations (quantum spectral curves). This equivalence generalizes both the spectral self-duality between the $2\times 2$ and $N\times N$ representations of the Toda chain and the famous AHH duality.

Funding Agency Grant Number
Federal Agency for Science and Innovations of Russian Federation 14.740.11.0347
Ministry of Education and Science of the Russian Federation NSh-3349.2012.2
Russian Foundation for Basic Research 10-02-00509
The work was partially supported by the Federal Agency for Science and Innovations of Russian Federation under contracts 14.740.11.0347 (A.Z., Y.Z.) and 14.740.11.0081 (A. Mor, A. Mir), by NSh-3349.2012.2, by RFBR grants 10-02-00509 (A. Mir.), 10-02-00499 (A. Mor., Y.Z.), 12-01-00482 (A.Z.), 12-01-33071 mol_a_ved (A.Z., Y.Z.), and by joint grants 11- 02-90453-Ukr, 13-02-91002-ANF, 12-02-92108-Yaf-a, 11-01-92612-Royal Society. The work of A. Zotov was also supported in part by the Russian President fund MK-1646.2011.1.


Full text: PDF file (172 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2013, 97:1, 45–51

Bibliographic databases:

Document Type: Article
Received: 03.12.2012
Language: English

Citation: A. Mironov, A. Morozov, Y. Zenkevich, A. Zotov, “Spectral duality in integrable systems from AGT conjecture”, Pis'ma v Zh. Èksper. Teoret. Fiz., 97:1 (2013), 49–55; JETP Letters, 97:1 (2013), 45–51

Citation in format AMSBIB
\by A.~Mironov, A.~Morozov, Y.~Zenkevich, A.~Zotov
\paper Spectral duality in integrable systems from AGT conjecture
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2013
\vol 97
\issue 1
\pages 49--55
\jour JETP Letters
\yr 2013
\vol 97
\issue 1
\pages 45--51

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bourgine J.-E., “Large N Techniques for Nekrasov Partition Functions and AGT Conjecture”, J. High Energy Phys., 2013, no. 5, 047  crossref  isi  elib  scopus
    2. Chen H.-Yu., Sinkovics A., “On Integrable Structure and Geometric Transition in Supersymmetric Gauge Theories”, J. High Energy Phys., 2013, no. 5, 158  crossref  mathscinet  isi  scopus
    3. Gaiotto D., Koroteev P., “On Three Dimensional Quiver Gauge Theories and Integrability”, J. High Energy Phys., 2013, no. 5, 126  crossref  mathscinet  zmath  isi  elib  scopus
    4. A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Chen H.-Yu., Hsin P.-Sh., Koroteev P., “On the Integrability of Four Dimensional N=2 Gauge Theories in the Omega Background”, J. High Energy Phys., 2013, no. 8, 076  crossref  mathscinet  zmath  isi  scopus
    6. Marshakov A., “Tau-Functions for Quiver Gauge Theories”, J. High Energy Phys., 2013, no. 7, 068  crossref  mathscinet  zmath  isi  elib  scopus
    7. Aminov G., Mironov A., Morozov A., Zotov A., “Three-Particle Integrable Systems with Elliptic Dependence on Momenta and Theta Function Identities”, Phys. Lett. B, 726:4-5 (2013), 802–808  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. JETP Letters, 99:2 (2014), 109–113  mathnet  crossref  crossref  isi  elib  elib
    9. Anokhina A. Morozov A., “Towards R-Matrix Construction of Khovanov-Rozansky Polynomials I. Primary T-Deformation of Homfly”, J. High Energy Phys., 2014, no. 7, 063  crossref  mathscinet  zmath  isi  elib  scopus
    10. Levin A., Olshanetsky M., Zotov A., “Relativistic Classical Integrable Tops and Quantum R-Matrices”, J. High Energy Phys., 2014, no. 7, 012  crossref  isi  scopus
    11. Bourgine J.-E., “Confinement and Mayer Cluster Expansions”, Int. J. Mod. Phys. A, 29:15 (2014), 1450077  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    12. Meneghelli C., Yang G., “Mayer-Cluster Expansion of Instanton Partition Functions and Thermodynamic Bethe Ansatz”, J. High Energy Phys., 2014, no. 5, 112  crossref  mathscinet  isi  scopus
    13. Bourgine J.-E., “Notes on Mayer Expansions and Matrix Models”, Nucl. Phys. B, 880 (2014), 476–503  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Gorsky A., Zabrodin A., Zotov A., “Spectrum of Quantum Transfer Matrices via Classical Many-Body Systems”, J. High Energy Phys., 2014, no. 1, 070, 1–28  crossref  mathscinet  isi  scopus
    15. Dolotin V., Morozov A., “Introduction to Khovanov Homologies. III. a New and Simple Tensor-Algebra Construction of Khovanov-Rozansky Invariants”, Nucl. Phys. B, 878 (2014), 12–81  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Levin A., Olshanetsky M., Zotov A., “Planck Constant as Spectral Parameter in Integrable Systems and Kzb Equations”, J. High Energy Phys., 2014, no. 10, 109  crossref  mathscinet  zmath  isi  scopus
    17. Bourgine J.-E., Fioravanti D., “Finite Epsilon(2)-Corrections To the N=2 SYM Prepotential”, Phys. Lett. B, 750 (2015), 139–146  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    18. Zabrodin A., Zotov A., “Classical-Quantum Correspondence and Functional Relations For Painlevé Equations”, Constr. Approx., 41:3, SI (2015), 385–423  crossref  mathscinet  zmath  isi  elib  scopus
    19. Zenkevich Y., “Generalized Macdonald Polynomials, Spectral Duality For Conformal Blocks and AGT Correspondence in Five Dimensions”, J. High Energy Phys., 2015, no. 5, 131  crossref  mathscinet  zmath  isi  elib  scopus
    20. Galakhov D. Mironov A. Morozov A., “Wall-Crossing Invariants: From Quantum Mechanics To Knots”, J. Exp. Theor. Phys., 120:3, SI (2015), 549–577  crossref  adsnasa  isi  elib  scopus
    21. Aminov G., Braden H.W., Mironov A., Morozov A., Zotov A., “Seiberg-Witten Curves and Double-Elliptic Integrable Systems”, J. High Energy Phys., 2015, no. 1, 033  crossref  mathscinet  isi  elib  scopus
    22. Morozov A., Zenkevich Y., “Decomposing Nekrasov Decomposition”, J. High Energy Phys., 2016, no. 2, 098  crossref  mathscinet  isi  scopus
    23. Kononov Ya., Morozov A., “On factorization of generalized Macdonald polynomials”, Eur. Phys. J. C, 76:8 (2016), 424  crossref  isi  scopus
    24. Mironov A., Morozov A., Zenkevich Y., “Ding–Iohara–Miki symmetry of network matrix models”, Phys. Lett. B, 762 (2016), 196–208  crossref  mathscinet  zmath  isi  elib  scopus
    25. Torrielli A., “Classical integrability”, J. Phys. A-Math. Theor., 49:32, SI (2016), 323001  crossref  mathscinet  zmath  isi  scopus
    26. Aminov G., Mironov A., Morozov A., “New non-linear equations and modular form expansion for double-elliptic Seiberg–Witten prepotential”, Eur. Phys. J. C, 76:8 (2016), 433  crossref  isi  scopus
    27. Smirnov A., “On the Instanton R-matrix”, Commun. Math. Phys., 345:3 (2016), 703–740  crossref  mathscinet  zmath  isi  elib  scopus
    28. Awata H. Kanno H. Matsumoto T. Mironov A. Morozov A. Morozov A. Ohkubo Yu. Zenkevich Y., “Explicit examples of DIM constraints for network matrix models”, J. High Energy Phys., 2016, no. 7, 103  crossref  mathscinet  zmath  isi  elib  scopus
    29. Awata H., Kanno H., Mironov A., Morozov A., Morozov A., Ohkubo Yu., Zenkevich Y., “Toric Calabi-Yau threefolds as quantum integrable systems. $ \mathcal{R}$ -matrix and $ \mathcal{RTT}$ relations”, J. High Energy Phys., 2016, no. 10, 047  crossref  mathscinet  isi  elib  scopus
    30. Mironov A., Morozov A., Zenkevich Y., “Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings”, J. High Energy Phys., 2016, no. 5, 121  crossref  mathscinet  zmath  isi  scopus
    31. Mironov A., Morozov A., Zenkevich Y., “On elementary proof of AGT relations from six dimensions”, Phys. Lett. B, 756 (2016), 208–211  crossref  isi  elib  scopus
    32. Bourgine J.-E., Fioravanti D., “Mayer expansion of the Nekrasov prepotential: The subleading $\varepsilon_2$-order”, Nucl. Phys. B, 906 (2016), 408–440  crossref  mathscinet  zmath  isi  elib  scopus
    33. Bourgine J.-E., Matsuo Yu., Zhang H., “Holomorphic field realization of SH$^c$ and quantum geometry of quiver gauge theories”, J. High Energy Phys., 2016, no. 4, 167  crossref  isi  elib  scopus
    34. N. Dorey, P. Zhao, “Solution of quantum integrable systems from quiver gauge theories”, J. High Energy Phys., 2017, no. 2, 118  crossref  mathscinet  zmath  isi  scopus
    35. G. Aminov, A. Mironov, A. Morozov, “Modular Properties of 6D (Dell) Systems”, J. High Energy Phys., 2017, no. 11, 023  crossref  mathscinet  isi  scopus
    36. H. Awata, H. Kanno, A. Mironov, A. Morozov, A. Morozov, Yu. Ohkubo, Y. Zenkevich, “Anomaly in RTT relation for DIM algebra and network matrix models”, Nucl. Phys. B, 918 (2017), 358–385  crossref  mathscinet  zmath  isi  scopus
    37. H. Awata, H. Kanno, A. Mironov, A. Morozov, A. Morozov, Yu. Ohkubo, Y. Zenkevich, “Generalized Knizhnik–Zamolodchikov Equation For Ding–Iohara–Miki Algebra”, Phys. Rev. D, 96:2 (2017), 026021  crossref  isi  scopus
    38. Y. Zenkevich, “Quantum spectral curve for (Q, t)-matrix model”, Lett. Math. Phys., 108:2 (2018), 413–424  crossref  mathscinet  zmath  isi  scopus
    39. H. Awata, H. Kanno, A. Mironov, A. Morozov, K. Suetake, Y. Zenkevich, “(q, t)-kz equations for quantum toroidal algebra and Nekrasov partition functions on ale spaces”, J. High Energy Phys., 2018, no. 3, 192  crossref  mathscinet  zmath  isi  scopus
    40. I. Sechin, A. Zotov, “R-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7  crossref  mathscinet  isi  scopus
    41. F. Nieri, Y. Pan, M. Zabzine, “3d mirror symmetry from s-duality”, Phys. Rev. D, 98:12 (2018), 126002  crossref  isi  scopus
    42. Nedelin A., Pasquetti S., Zenkevich Y., “T[Su(N)] Duality Webs: Mirror Symmetry, Spectral Duality and Gauge/Cft Correspondences”, J. High Energy Phys., 2019, no. 2, 176  crossref  isi  scopus
    43. Awata H., Kanno H., Mironov A., Morozov A., Suetake K., Zenkevich Y., “The Macmahon R-Matrix”, J. High Energy Phys., 2019, no. 4, 097  crossref  isi  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:305
    Full text:39
    First page:5

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019