General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Pis'ma v Zh. Èksper. Teoret. Fiz.:

Personal entry:
Save password
Forgotten password?

Pis'ma v Zh. Èksper. Teoret. Fiz., 2013, Volume 97, Issue 4, Pages 221–225 (Mi jetpl3355)  

This article is cited in 14 scientific papers (total in 14 papers)


Rogue waves in the basin of intermediate depth and the possibility of their formation due to the modulational instability

I. I. Didenkulovaabc, I. F. Nikolkinaac, E. N. Pelinovskydc

a Institute of Cybernetics at Tallinn University of Technology
b MARUM — Center for Marine Environmental Sciences, University of Bremen
c Nizhny Novgorod State Technical University
d Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod

Abstract: Properties of rogue waves in the basin of intermediate depth are discussed in comparison with known properties of rogue waves in deep waters. Based on observations of rogue waves in the ocean of intermediate depth we demonstrate that the modulational instability can still play a significant role in their formation for basins of $20$ m and larger depth. For basins of smaller depth, the influence of modulational instability is less probable. By using the rational solutions of the nonlinear Schrödinger equation (breathers), it is shown that the rogue wave packet becomes wider and contains more individual waves in intermediate rather than in deep waters, which is also confirmed by observations.


Full text: PDF file (1036 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2013, 97:4, 194–198

Bibliographic databases:

Document Type: Article
Received: 01.11.2012
Revised: 16.01.2013
Language: English

Citation: I. I. Didenkulova, I. F. Nikolkina, E. N. Pelinovsky, “Rogue waves in the basin of intermediate depth and the possibility of their formation due to the modulational instability”, Pis'ma v Zh. Èksper. Teoret. Fiz., 97:4 (2013), 221–225; JETP Letters, 97:4 (2013), 194–198

Citation in format AMSBIB
\by I.~I.~Didenkulova, I.~F.~Nikolkina, E.~N.~Pelinovsky
\paper Rogue waves in the basin of intermediate depth and the possibility of their formation due to the modulational instability
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2013
\vol 97
\issue 4
\pages 221--225
\jour JETP Letters
\yr 2013
\vol 97
\issue 4
\pages 194--198

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kartashov E., “Time Scales and Structures of Wave Interaction Exemplified with Water Waves”, EPL, 102:4 (2013), 44005  crossref  adsnasa  isi  scopus
    2. Montalvo P., Kraenkel R., Manna M.A., Kharif C., “Wind-Wave Amplification Mechanisms: Possible Models for Steep Wave Events in Finite Depth”, Nat. Hazards Earth Syst. Sci., 13:11 (2013), 2805–2813  crossref  adsnasa  isi  elib  scopus
    3. Sergeeva A., Slunyaev A., Pelinovsky E., Talipova T., Doong D.-J., “Numerical Modeling of Rogue Waves in Coastal Waters”, Nat. Hazards Earth Syst. Sci., 14:4 (2014), 861–870  crossref  adsnasa  isi  elib  scopus
    4. Giudici A., Nikolkina I., Soomere T., “Automated Detection of Crossing Seas From Simulated Wave Spectra”, 2014 IEEE/Oes Baltic International Symposium (Baltic), IEEE, 2014  isi
    5. Fernandez L., Onorato M., Monbaliu J., Toffoli A., “Modulational Instability and Wave Amplification in Finite Water Depth”, Nat. Hazards Earth Syst. Sci., 14:3 (2014), 705–711  crossref  adsnasa  isi  elib  scopus
    6. Hu Zh., Tang W., Xue H., Zhang X., “Numerical Study of Rogue Waves as Nonlinear Schrodinger Breather Solutions Under Finite Water Depth”, Wave Motion, 52 (2015), 81–90  crossref  mathscinet  isi  elib  scopus
    7. Hu Zh., Xue H., Tang W., Zhang X., “Numerical Study of Nonlinear Peregrine Breather Under Finite Water Depth”, Ocean Eng., 108 (2015), 70–80  crossref  isi  elib  scopus
    8. Zakeri G.-A., Yomba E., “Modulational Instability Regions For Coupled Ginzburg-Landau Equations With Higher Order of Nonlinearities”, Phys. Rev. E, 91:6 (2015), 062904  crossref  mathscinet  adsnasa  isi  elib  scopus
    9. Zakeri G.-A., Yomba E., “Vector Solitons in An Extended Coupled Schrodinger Equations With Modulated Nonlinearities”, Commun. Nonlinear Sci. Numer. Simul., 30:1-3 (2016), 344–359  crossref  mathscinet  isi  elib  scopus
    10. Bitner-Gregersen E.M., Dong Sh., Fu T., Ma N., Maisondieu Ch., Miyake R., Rychlik I., “Sea state conditions for marine structures' analysis and model tests”, Ocean Eng., 119 (2016), 309–322  crossref  isi  elib  scopus
    11. Slunyaev A., Sergeeva A., Didenkulova I., “Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth”, Nat. Hazards, 84:2 (2016), S549–S565  crossref  isi  scopus
    12. H. D. Zhang, G. Ducrozet, M. Klein, C. Guedes Soares, “An experimental and numerical study on breather solutions for surface waves in the intermediate water depth”, Ocean Eng., 133 (2017), 262–270  crossref  isi  scopus
    13. H. Qin, W. Tang, H. Xue, Zh. Hu, “Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space”, Appl. Ocean Res., 64 (2017), 155–168  crossref  isi  scopus
    14. B. Liao, G. Dong, Y. Ma, J. L. Gao, “Linear-Shear-Current Modified Schrodinger Equation For Gravity Waves in Finite Water Depth”, Phys. Rev. E, 96:4 (2017), 043111  crossref  isi  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:90
    Full text:17
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019