General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Pis'ma v Zh. Èksper. Teoret. Fiz.:

Personal entry:
Save password
Forgotten password?

Pis'ma v Zh. Èksper. Teoret. Fiz., 2009, Volume 89, Issue 2, Pages 70–74 (Mi jetpl339)  

This article is cited in 23 scientific papers (total in 23 papers)


Terahertz laser based on optically pumped graphene: model and feasibility of realization

V. Ya. Aleshkina, A. A. Dubinova, V. I. Ryzhiibc

a Institute for Physics of Microstructures, Russian Academy of Sciences
b Japan Science and Technology Agency, CREST, 107-0075 Tokyo, Japan
c University of Aizu, 965-8580 Aizu-Wakamatsu, Japan

Abstract: We consider a terahertz laser based on optically pumped graphene layer and bilayer as the active media and suggested waveguide structure. Using the developed model, we calculate the spectral dependences the dynamic conductivity of the optically pumped graphene layer and bilayer associated with the interband and intraband transitions, estimate the pumping optical power required for lasing, and demonstrate the feasibility of realization of such a laser.

Full text: PDF file (763 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2009, 89:2, 63–67

Bibliographic databases:

PACS: 78.66.-w, 81.05.Uw
Received: 13.11.2008
Language: English

Citation: V. Ya. Aleshkin, A. A. Dubinov, V. I. Ryzhii, “Terahertz laser based on optically pumped graphene: model and feasibility of realization”, Pis'ma v Zh. Èksper. Teoret. Fiz., 89:2 (2009), 70–74; JETP Letters, 89:2 (2009), 63–67

Citation in format AMSBIB
\by V.~Ya.~Aleshkin, A.~A.~Dubinov, V.~I.~Ryzhii
\paper Terahertz laser based on optically pumped graphene: model and feasibility of realization
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2009
\vol 89
\issue 2
\pages 70--74
\jour JETP Letters
\yr 2009
\vol 89
\issue 2
\pages 63--67

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. JETP Letters, 90:6 (2009), 469–474  mathnet  crossref  isi
    2. Dubinov A.A., Aleshkin V.Ya., Ryzhii M., Otsuji T., Ryzhii V., “Terahertz Laser with Optically Pumped Graphene Layers and Fabri-Perot Resonator”, Applied Physics Express, 2:9 (2009), 092301  crossref  adsnasa  isi  elib  scopus
    3. Dong H.M., Zhang J., Peeters F.M., Xu W., “Optical conductance and transmission in bilayer graphene”, Journal of Applied Physics, 106:4 (2009), 043103  crossref  adsnasa  isi  scopus
    4. Chakraborty B., Das A., Sood A.K., “The formation of a p-n junction in a polymer electrolyte top-gated bilayer graphene transistor”, Nanotechnology, 20:36 (2009), 365203  crossref  adsnasa  isi  elib  scopus
    5. Ryzhii V., Ryzhii M., “Graphene bilayer field-effect phototransistor for terahertz and infrared detection”, Physical Review B, 79:24 (2009), 245311  crossref  adsnasa  isi  elib  scopus
    6. Sokolov V.N., Kochelap V.A., Kim K.W., “Magnetoconcentration effect in intrinsic graphene ribbons”, Applied Physics Letters, 97:11 (2010), 112112  crossref  adsnasa  isi  elib  scopus
    7. Nagel M., Michalski A., Botzem T., Kurz H., “Near-field investigation of THz surface-wave emission from optically excited graphite flakes”, Optics Express, 19:5 (2011), 4667–4672  crossref  adsnasa  isi  elib  scopus
    8. Kalugin N.G., Jing L., Bao W., Wickey L., Del Barga Ch., Ovezmyradov M., Shaner E.A., Lau Ch.N., “Graphene-Based Quantum Hall Effect Infrared Photodetectors”, Quantum Sensing and Nanophotonic Devices, Proceedings of SPIE, 8268, 2012, 826836  crossref  isi  scopus
    9. Ikonnikov A.V., Zholudev M.S., Gavrilenko V.I., Mikhailov N.N., Dvoretskii S.A., “Magnetoabsorption in Narrow-Gap Hgcdte Epitaxial Layers in the Terahertz Range”, Semiconductors, 47:12 (2013), 1545–1550  crossref  adsnasa  isi  elib  scopus
    10. Ryzhii V., Ryzhii M., Mitin V., Shur M.S., Otsuji T., “Negative Terahertz Conductivity in Remotely Doped Graphene Bilayer Heterostructures”, J. Appl. Phys., 118:18 (2015), 183105  crossref  adsnasa  isi  elib  scopus
    11. Svintsov D., Otsuji T., Mitin V., Shur M.S., Ryzhii V., “Negative Terahertz Conductivity in Disordered Graphene Bilayers With Population Inversion”, Appl. Phys. Lett., 106:11 (2015), 113501  crossref  adsnasa  isi  elib  scopus
    12. Morozov M.Yu., Davoyan A.R., Moiseenko I.M., Satou A., Otsuji T., Popov V.V., “Active Guiding of Dirac Plasmons in Graphene”, Appl. Phys. Lett., 106:6 (2015), 061105  crossref  adsnasa  isi  elib  scopus
    13. Ryzhii V., Otsuji T., Ryzhii M., Mitin V., Shur M.S., “Effect of Indirect Interband Transitions on Terahertz Conductivity in “Decorated” Graphene Bilayer Heterostructures”, Lith. J. Phys., 55:4 (2015), 243–248  isi  elib
    14. Dubinov A.A., Bylinkin A., Aleshkin V.Ya., Ryzhii V., Otsuji T., Svintsov D., “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-layer structure”, Opt. Express, 24:26 (2016), 29603–29612  crossref  isi  scopus
    15. Dubinov A.A., “Germanium laser with a hybrid surface plasmon mode”, Semiconductors, 50:11 (2016), 1449–1452  crossref  isi  scopus
    16. Morozov M.Yu., Moiseenko I.M., Popov V.V., “Amplification of plasma waves in shielded active graphene”, Tech. Phys. Lett., 42:1 (2016), 40–42  crossref  mathscinet  isi  elib  scopus
    17. Rumyantsev V.V., Kadykov A.M., Fadeev M.A., Dubinov A.A., Utochkin V.V., Mikhailov N.N., Dvoretskii S.A., Morozov S.V., Gavrilenko V.I., “Investigation of Hgcdte Waveguide Structures With Quantum Wells For Long-Wavelength Stimulated Emission”, Semiconductors, 51:12 (2017), 1557–1561  crossref  isi  scopus
    18. Morozov S.V., Rumyantsev V.V., Fadeev M.A., Zholudev M.S., Kudryavtsev K.E., Antonov A.V., Kadykov A.M., Dubinov A.A., Mikhailov N.N., Dvoretsky S.A., Gavrilenko V.I., “Stimulated Emission From Hgcdte Quantum Well Heterostructures At Wavelengths Up to 19.5 Mu M”, Appl. Phys. Lett., 111:19 (2017), 192101  crossref  isi  scopus
    19. Dubinov A.A., Aleshkin V.Ya., “Calculation of Modal Gain For Terahertz Lasers Based on Hgcdte Heterostructures With Quantum Wells”, Fundamental and Applied Problems of Rerahertz Devices and Technologies, Selected Topics in Electronics and Systems, 58, eds. Ryzhii M., Satou A., Otsuji T., World Scientific Publ Co Pte Ltd, 2017, 69–77  isi
    20. Moiseenko I.M., Morozov M.Yu., Popov V.V., “Negative Terahertz Conductivity of Graphene When Pumping By Optical Plasmons”, Tech. Phys. Lett., 43:6 (2017), 523–526  crossref  isi  scopus
    21. Morozov M.Yu., Moiseenko I.M., Popov V.V., “Giant Amplification of Terahertz Plasmons in a Double-Layer Graphene”, J. Phys.-Condes. Matter, 30:8 (2018), 08LT02  crossref  isi  scopus
    22. Rumyantsev V.V., Bovkun L.S., Kadykov A.M., Fadeev M.A., Dubinov A.A., Aleshkin V.Ya., Mikhailov N.N., Dvoretsky S.A., Piot B., Orlita M., Potemski M., Teppe F., Morozov S.V., Gavrilenko V.I., “Magnetooptical Studies and Stimulated Emission in Narrow Gap Hgte/Cdhgte Structures in the Very Long Wavelength Infrared Range”, Semiconductors, 52:4 (2018), 436–441  crossref  isi  scopus
    23. Evseev D.A. Sementsov D.I., “Surface Plasmon Polaritons At the Boundary of a Graphene-Based Thin-Layer Medium”, Phys. Solid State, 60:3 (2018), 616–621  crossref  isi  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:232
    Full text:68

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019