RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zh. Èksper. Teoret. Fiz., 2013, Volume 97, Issue 10, Pages 693–699 (Mi jetpl3431)  

This article is cited in 1 scientific paper (total in 1 paper)

QUANTUM INFORMATION SCIENCE

On the quantum-mechanical bound on the loss of information through side channels in quantum cryptography

S. N. Molotkovabc

a Academy of Criptography of Russia
b Institute of Solid State Physics, Russian Academy of Sciences
c M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: The security of cryptographic keys in quantum cryptography systems is guaranteed by fundamental quantum mechanical exclusion principles. A quantum channel through which quantum states are transferred is not controlled and an eavesdropper can perform any modifications with it. The security of quantum key distribution protocols has already been proved [M. Tomamichel et al., Nature Commun. 3, 634 (2011); S. N. Molotkov, J. Exp. Theor. Phys. 115, 969 (2012)], including the realistic case of a finite length of transmitted sequences. It is always assumed that the eavesdropper has neither direct nor indirect access to the transmitting and receiving equipment. The real situation is somewhat different. The preparation and detection of quantum states occur according to random sequences that are generated on the transmitter and receiver sides. Detecting electromagnetic radiation generated in these processes, the eavesdropper can obtain additional information on a key. The upper quantum-mechanical bound on the amount of information of the eavesdropper on the key that can be obtained through a side channel has been determined.

DOI: https://doi.org/10.7868/S0370274X1310010X

Full text: PDF file (251 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2013, 97:10, 604–610

Bibliographic databases:

Received: 11.03.2013
Revised: 15.04.2013

Citation: S. N. Molotkov, “On the quantum-mechanical bound on the loss of information through side channels in quantum cryptography”, Pis'ma v Zh. Èksper. Teoret. Fiz., 97:10 (2013), 693–699; JETP Letters, 97:10 (2013), 604–610

Citation in format AMSBIB
\Bibitem{Mol13}
\by S.~N.~Molotkov
\paper On the quantum-mechanical bound on the loss of information through side channels in quantum cryptography
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2013
\vol 97
\issue 10
\pages 693--699
\mathnet{http://mi.mathnet.ru/jetpl3431}
\crossref{https://doi.org/10.7868/S0370274X1310010X}
\elib{http://elibrary.ru/item.asp?id=21055990}
\transl
\jour JETP Letters
\yr 2013
\vol 97
\issue 10
\pages 604--610
\crossref{https://doi.org/10.1134/S002136401310007X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000322715900010}
\elib{http://elibrary.ru/item.asp?id=20451015}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883773919}


Linking options:
  • http://mi.mathnet.ru/eng/jetpl3431
  • http://mi.mathnet.ru/eng/jetpl/v97/i10/p693

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Quantum Electron., 48:9 (2018), 777–801  mathnet  crossref  isi  elib
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:168
    Full text:47
    References:34
    First page:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020