RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Письма в ЖЭТФ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Письма в ЖЭТФ, 2014, том 100, выпуск 4, страницы 297–304 (Mi jetpl4105)  

Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)

МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Towards matrix model representation of HOMFLY polynomials

A. Aleksandrovabc, A. D. Mironovda, A. Morozova, A. A. Morozovefa

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
b Freiburg Institute for Advanced Studies, University of Freiburg
c Mathematics Institute, University of Freiburg
d P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow
e Chelyabinsk State University
f M. V. Lomonosov Moscow State University, Faculty of Physics

Аннотация: We investigate possibilities of generalizing the TBEM (Tierz, Brini–Eynard–Mariño) eigenvalue matrix model, which represents the non-normalized colored HOMFLY polynomials for torus knots as averages of the corresponding characters. We look for a model of the same type, which is a usual Chern–Simons mixture of the Gaussian potential, typical for Hermitean models, and the sine Vandermonde factors, typical for the unitary ones. We mostly concentrate on the family of twist knots, which contains a single torus knot, the trefoil. It turns out that for the trefoil the TBEM measure is provided by an action of Laplace exponential on the Jones polynomial. This procedure can be applied to arbitrary knots and provides a TBEM-like integral representation for the $N=2$ case. However, beyond the torus family, both the measure and its lifting to larger $N$ contain non-trivial corrections in $\hbar=\log q$. A possibility could be to absorb these corrections into a deformation of the Laplace evolution by higher Casimir and/or cut-and-join operators, in the spirit of Hurwitz $\tau$-function approach to knot theory, but this remains a subject for future investigation.

DOI: https://doi.org/10.7868/S0370274X14160115

Полный текст: PDF файл (192 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Experimental and Theoretical Physics Letters, 2014, 100:4, 271–278

Реферативные базы данных:

Тип публикации: Статья
Поступила в редакцию: 16.07.2014
Язык публикации: английский

Образец цитирования: A. Aleksandrov, A. D. Mironov, A. Morozov, A. A. Morozov, “Towards matrix model representation of HOMFLY polynomials”, Письма в ЖЭТФ, 100:4 (2014), 297–304; JETP Letters, 100:4 (2014), 271–278

Цитирование в формате AMSBIB
\RBibitem{AleMirMor14}
\by A.~Aleksandrov, A.~D.~Mironov, A.~Morozov, A.~A.~Morozov
\paper Towards matrix model representation of HOMFLY polynomials
\jour Письма в ЖЭТФ
\yr 2014
\vol 100
\issue 4
\pages 297--304
\mathnet{http://mi.mathnet.ru/jetpl4105}
\crossref{https://doi.org/10.7868/S0370274X14160115}
\elib{http://elibrary.ru/item.asp?id=21997965}
\transl
\jour JETP Letters
\yr 2014
\vol 100
\issue 4
\pages 271--278
\crossref{https://doi.org/10.1134/S0021364014160036}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344615700011}
\elib{http://elibrary.ru/item.asp?id=24029756}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920884147}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/jetpl4105
  • http://mi.mathnet.ru/rus/jetpl/v100/i4/p297

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Mironov A., Morozov A., Morozov A., Sleptsov A., “Colored Knot Polynomials: Homfly in Representation [2,1]”, Int. J. Mod. Phys. A, 30:26 (2015), 1550169  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. Mironov A., Morozov A., Sleptsov A., “Colored Homfly Polynomials For the Pretzel Knots and Links”, J. High Energy Phys., 2015, no. 7, 069  crossref  mathscinet  isi  scopus
    3. Galakhov D., Mironov A., Morozov A., “Wall-Crossing Invariants: From Quantum Mechanics To Knots”, J. Exp. Theor. Phys., 120:3, SI (2015), 549–577  crossref  adsnasa  isi  elib  scopus
    4. Awata H., Kanno H., Matsumoto T., Mironov A., Morozov A., Morozov A., Ohkubo Yu., Zenkevich Y., “Explicit examples of DIM constraints for network matrix models”, J. High Energy Phys., 2016, no. 7, 103  crossref  mathscinet  zmath  isi  elib  scopus
    5. Morozov A., “Differential expansion and rectangular HOMFLY for the figure eight knot”, Nucl. Phys. B, 911 (2016), 582–605  crossref  zmath  isi  elib  scopus
    6. Morozov A., “Factorization of differential expansion for antiparallel double-braid knots”, J. High Energy Phys., 2016, no. 9, 135  crossref  mathscinet  zmath  isi  scopus
    7. Mironov A., Morozov A., “Universal Racah matrices and adjoint knot polynomials: Arborescent knots”, Phys. Lett. B, 755 (2016), 47–57  crossref  mathscinet  zmath  isi  elib  scopus
    8. Mironov A., Mkrtchyan R., Morozov A., “On universal knot polynomials”, J. High Energy Phys., 2016, no. 2, 078  crossref  mathscinet  isi  scopus
    9. Mironov A., Morozov A., Morozov A., Ramadevi P., Singh V.K., Sleptsov A., “Tabulating knot polynomials for arborescent knots”, J. Phys. A-Math. Theor., 50:8 (2017), 085201  crossref  mathscinet  zmath  isi  scopus
    10. А. Ю. Морозов, А. А. Морозов, А. В. Пополитов, “Матричные модели и размерности в вершинах гиперкубов”, ТМФ, 192:1 (2017), 115–163  mathnet  crossref  mathscinet  zmath  elib; A. Yu. Morozov, A. A. Morozov, A. V. Popolitov, “Matrix model and dimensions at hypercube vertices”, Theoret. and Math. Phys., 192:1 (2017), 1039–1079  crossref  mathscinet  zmath  isi  scopus
    11. Mironov A. Morozov A. Morozov A. Ramadevi P. Singh V.K. Sleptsov A., “Checks of Integrality Properties in Topological Strings”, J. High Energy Phys., 2017, no. 8, 139  crossref  mathscinet  zmath  isi  scopus
    12. Mironov A., Morozov A., “On the Complete Perturbative Solution of One-Matrix Models”, Phys. Lett. B, 771 (2017), 503–507  crossref  zmath  isi  scopus
    13. Anokhina A., Morozov A., “Are Khovanov-Rozansky Polynomials Consistent With Evolution in the Space of Knots?”, J. High Energy Phys., 2018, no. 4, 066  crossref  mathscinet  isi  scopus
    14. Morozov A., “Knot Polynomials For Twist Satellites”, Phys. Lett. B, 782 (2018), 104–111  crossref  mathscinet  isi  scopus
    15. Mironov A., Morozov A., “Sum Rules For Characters From Character-Preservation Property of Matrix Models”, J. High Energy Phys., 2018, no. 8, 163  crossref  isi
    16. Awata H., Kanno H., Mironov A., Morozov A., Morozov A., “Nontorus Link From Topological Vertex”, Phys. Rev. D, 98:4 (2018), 046018  crossref  isi
  • Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Просмотров:
    Эта страница:64
    Полный текст:5
    Литература:15
    Первая стр.:12

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018