RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zh. Èksper. Teoret. Fiz., 2014, Volume 100, Issue 7, Pages 532–535 (Mi jetpl4142)  

This article is cited in 4 scientific papers (total in 4 papers)

NONLINEAR DYNAMICS

On localized long-lived three-dimensional solutions of the nonlinear Klein-Gordon equation with a fractional power potential

E. G. Ekomasov, R. K. Salimov

Bashkir State University, Ufa

Abstract: The existence of long-lived (t 1000) stable spherically symmetric solutions in the form of pulsons has been numerically revealed for a certain class of Klein-Gordon equations. Their average amplitude of oscillations and the frequency of fast oscillation mode do not change during the entire time of calculation.

DOI: https://doi.org/10.7868/S0370274X14190114

Full text: PDF file (323 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2014, 100:7, 477–480

Bibliographic databases:

Document Type: Article
Received: 20.06.2014
Revised: 01.09.2014

Citation: E. G. Ekomasov, R. K. Salimov, “On localized long-lived three-dimensional solutions of the nonlinear Klein-Gordon equation with a fractional power potential”, Pis'ma v Zh. Èksper. Teoret. Fiz., 100:7 (2014), 532–535; JETP Letters, 100:7 (2014), 477–480

Citation in format AMSBIB
\Bibitem{EkoSal14}
\by E.~G.~Ekomasov, R.~K.~Salimov
\paper On localized long-lived three-dimensional solutions of the nonlinear Klein-Gordon equation with a fractional power potential
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2014
\vol 100
\issue 7
\pages 532--535
\mathnet{http://mi.mathnet.ru/jetpl4142}
\crossref{https://doi.org/10.7868/S0370274X14190114}
\elib{http://elibrary.ru/item.asp?id=22627630}
\transl
\jour JETP Letters
\yr 2014
\vol 100
\issue 7
\pages 477--480
\crossref{https://doi.org/10.1134/S0021364014190035}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000346777300011}
\elib{http://elibrary.ru/item.asp?id=24025992}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919950557}


Linking options:
  • http://mi.mathnet.ru/eng/jetpl4142
  • http://mi.mathnet.ru/eng/jetpl/v100/i7/p532

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. G. Ekomasov, R. K. Salimov, “On the nonlinear (3 + 1)-dimensional Klein–Gordon equation allowing oscillating localized solutions”, JETP Letters, 102:2 (2015), 122–124  mathnet  crossref  isi  elib  elib
    2. E. G. Ekomasov, R. K. Salimov, “Pseudo-spectral Fourier method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional Klein–Gordon equations”, Comput. Math. Math. Phys., 56:9 (2016), 1604–1610  mathnet  crossref  crossref  isi  elib
    3. Salimov R.K. Ekomasov E.G., “Nonlinear Klein-Gordon Equation Pulsons With a Fractional Power Potential”, Lett. Mater., 6:1 (2016), 43–45  crossref  isi  scopus
    4. Ekomasov E.G., Gumerov A.M., Kudryavtsev R.V., “Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping”, J. Comput. Appl. Math., 312 (2017), 198–208  crossref  mathscinet  zmath  isi  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:93
    Full text:9
    References:24
    First page:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018