RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zh. Èksper. Teoret. Fiz., 2015, Volume 101, Issue 2, Pages 131–135 (Mi jetpl4533)  

This article is cited in 2 scientific papers (total in 2 papers)

CONDENSED MATTER

Temperature derivative of the chemical potential and its magnetooscillations in two-dimensional system

Y. Tupikovab, A. Yu. Kuntsevichca, V. M. Pudalovac, I. S. Burmistrovdc

a P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow
b Pennsylvania State University
c Moscow Institute of Physics and Technology
d L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: We report first thermodynamic measurements of the temperature derivative of chemical potential ($\partial \mu/\partial T$) in two-dimensional (2D) electron systems. In order to test the technique we have chosen Schottky gated GaAs/AlGaAs heterojunctions and detected experimentally in this 2D system quantum magnetooscillations of $\partial \mu/\partial T$. We also present a Lifshits–Kosevitch type theory for the $\partial \mu/\partial T$ magnetooscillations in 2D systems and compare the theory with experimental data. The magnetic field dependence of the $\partial \mu/\partial T$ value appears to be sensitive to the density of states shape of Landau levels. The data in low magnetic field domain demonstrate brilliant agreement with theory for non-interacting Fermi gas with Lorentzian Landau level shape.

DOI: https://doi.org/10.7868/S0370274X15020113

Full text: PDF file (233 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2015, 101:2, 125–129

Bibliographic databases:

Received: 04.12.2014
Language:

Citation: Y. Tupikov, A. Yu. Kuntsevich, V. M. Pudalov, I. S. Burmistrov, “Temperature derivative of the chemical potential and its magnetooscillations in two-dimensional system”, Pis'ma v Zh. Èksper. Teoret. Fiz., 101:2 (2015), 131–135; JETP Letters, 101:2 (2015), 125–129

Citation in format AMSBIB
\Bibitem{TupKunPud15}
\by Y.~Tupikov, A.~Yu.~Kuntsevich, V.~M.~Pudalov, I.~S.~Burmistrov
\paper Temperature derivative of the chemical potential and its
magnetooscillations in two-dimensional system
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2015
\vol 101
\issue 2
\pages 131--135
\mathnet{http://mi.mathnet.ru/jetpl4533}
\crossref{https://doi.org/10.7868/S0370274X15020113}
\elib{http://elibrary.ru/item.asp?id=23218361}
\transl
\jour JETP Letters
\yr 2015
\vol 101
\issue 2
\pages 125--129
\crossref{https://doi.org/10.1134/S0021364015020125}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000352657100011}
\elib{http://elibrary.ru/item.asp?id=24023035}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927665243}


Linking options:
  • http://mi.mathnet.ru/eng/jetpl4533
  • http://mi.mathnet.ru/eng/jetpl/v101/i2/p131

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pudalov V.M., Kuntsevich A.Yu., Burmistrov I.S., Reznikov M., J. Low Temp. Phys., 181:3-4 (2015), 99–111  crossref  adsnasa  isi  elib  scopus
    2. Burmistrov I.S., Ann. Phys., 364 (2016), 120–135  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:103
    Full text:8
    References:16
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019